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2.10  The flowsheet neglected to recycle some of the CO2 and contained some stylistic errors.  Use the 
revised flowsheet below with the following explanation: 
 
The overall process should agree with the overall reaction;  ideally only CaCO3 and NaCl should enter the 
process and only Na2CO3 and CaCl2 should leave the process.  However, it is not possible to separate 
CaCl2 from NH4Cl; both are soluble in water.  So, the CaCl2/NH4Cl solution must be discarded or purged.  
Recycling a portion of the CaCl2/NH4Cl solution will consume some of the CaCl2 but will also cause 
NH4Cl to build up in the chlorinator/carbonator loop.  In either case (partial purge or complete purging of 
the CaCl2/NH4Cl solution) NH4Cl must be added to the system. 
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2.15(C)  There should not be any SO3 in the recycle, as shown below. 
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3.13  In the summary of part (B) change stream 6 to stream 8 as follows: 

kg/min4.928, =TF  

(C)  In the summary, change stream 8 to stream 10 as follows: 

kg/min6.3510, =TF  

Summary of stream 10. 
 
3.17  Change “and” to “has” in part (A): 
(A) Stream 2 is formed by combining streams 1 and 6.  Thus, FQ,2 > FQ,1  and  FQ,2 > FQ,6.  Stream 2 has 
more Q than stream 3, because Q is converted to Z in the reactor.  And stream 5 has the same amount of Q 
as stream 3. 
 
3.18  Change “the” to “that” in part (B): 
(B) Plan of Attack.  The key is to note that the compositions of all air streams are given.  The input air, 
stream 1, is 0.5% water.  The recycle, stream 2, is 1.0% water.  Streams 3, 4, and 5 have the same 
composition, 3.0% water.  The amount of water that exits via stream 5 is the water that enters with the air 
in stream 1 plus the water given up by the solids.  … 
 
3.19  The intermediate result on stream 4 should be changed to: 
 

The flow rate of zeolite stream 4 is 6.5 kg/min 
 
3.21  add the following to part (A), second paragraph: 
 
(A)  
 A useful approach to analyzing the ratio of product to by-product is to consider the flow rate of HCl 
into the system.  1 mol/min of HCl is required to convert C2H2 to product C2H3Cl.  The additional HCl in 
each process converts C2H3Cl to by-product C2H4Cl2. 



 
Change the wording in part (C): 
(C) Now one must study the internal workings of each scheme.  Scheme I has a flow rate into the reactor 
of 2.2 mol/min.  Schemes II and III must have higher flow rates because they have approximately the same 
flow rate of fresh C2H2 and HCl plus the amount recycled.  Which scheme recycles the most?  Obviously, 
Scheme II does. 
 
3.30  The published solution uses the incorrect heat capacity for air (42 J/(mol·ºC)), which appears 
incorrectly in the table on p. 138.  The correct value is (29 J/(mol·ºC). 

Substitute flow rates and thermodynamic constants. 
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By inspection, the flow rate of water through the imaginary water evaporator equals the flow rate of 
water in stream 2.  Thus the weight fraction of water in stream 2 is (0.80)/(100. + 0.80) = 0.0079. 

Stream 2 is 0.79 wt % water. 

(B)  
Substitute flow rates and thermodynamic constants. 
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The maximum air temperature is 53°C (127°F). 

 
3.31  The published solution uses the incorrect heat capacity for air (42 J/(mol·ºC)), which appears 
incorrectly in the table on p. 138.  The correct value is (29 J/(mol·ºC).  In addition, changing the 
temperature of the water returned to the lake to 55°F from 50°F changes the solution to part (C). 
 

Calculate the rate that energy is removed from the air by cooling. 
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Δqair is negative because the air loses energy when it cools.  Calculate the flow rate of chilled water. 
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Convert to gal/hr. 
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The flow rate of chilled water is 1.4 × 106 gal/hour. 

(B)  
Calculate the energy released by condensing the water vapor. 
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The energy released by condensing the water vapor is over four times the energy released by cooling 
the air.  Calculate the total energy released by cooling the air and condensing water vapor from the 
air. 
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The flow rate of chilled water can be calculated from the ratio of the energy released by the air in 
parts (A) and (B). 
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The flow rate of chilled water is 7.6 × 106 gal/hr. 

(C) Apply an energy balance to the lake water - chilled water heat exchanger. 
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The flow rate of lake water is 7.6 × 106 gal/hr. 

 
3.40  The published solution uses the incorrect heat capacity for air (42 J/(mol·ºC)), which appears 
incorrectly in the table on p. 138.  The solution to (C) incorrectly uses the density of air at −5°C (1.3 
kg/m3), contrary to the exercise statement.  In (D), change qheater to qevap and change qevap to qheater. 
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(D) 
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The total heating rate is thus 
hr/kJ109.3hr/kJ)1038.71016.3( 434
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3.47 This revised solution corresponds to the revised exercise statement (see errata).  The published 
exercise statement leads students to compare ROI's for the two options, and ROI's for services are 
confusing - beyond the intent of this textbook. 
 
Option 1
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Option 2
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Option 2 has the lower operating cost 
 
3.54  (C)  The solution incorrectly uses the boule diameter instead of the radius.  The corrections are 
underline below. 
 
The density is thus a factor of 0.393/0.433  =  0.91 less than the boule.  Again apply conservation of mass. 
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The volume of the fiber on the spool is the volume of a cylinder which encloses the entire spool minus the 
volume of a cylinder for the empty spool. 
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4.4  Replace the last line in the solution with the following text and replace the figure with the figure 
shown below. 
 
… The path moves downward to 1 torr and a partial molar volume that is 90% liquid and 10% vapor.  
Because the vapor/liquid region is about four decades wide at 1 torr - from liquid at 0.1 L/(mol benzene) to 
vapor at about 22.4 × (760 torr/1 torr) = 17,000 L/(mol benzene) - the point is about one-quarter the width 
of the two-phase region.  The condensed liquid is drained, which corresponds to moving to the border 
between vapor and the two-phase region.  Finally the temperature is returned to 26°C. 
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4.5 Replace the entire solution with the following: 
 
 Because the process is at constant volume, it is perhaps easier to start with the P-V phase map.  Until 
we reach the two-phase border (at the dew point) the system is still entirely vapor so the path is vertically 
downward.  After we reach the border to the vapor/liquid region, the benzene begins to condense, which 
decreases the partial pressure of benzene.  Condensing 90% of the benzene vapor results in a molar volume 
of benzene (which is the weighted average of the molar volume of benzene liquid and benzene vapor) that 
is about one decade from the two-phase border.  Because the two-phase region is over 4 decades wide at 
this pressure (see solution to 4.4) the molar volume is about one-quarter width of the two phase region.  
The condensed liquid is drained, which corresponds to moving to the two-phase/vapor border.  Finally the 
system is returned to a total pressure of 1 atm and 26°C.  

We now map the path on the P-V map to the P-T map.  Pressure and temperature both decrease as 
we cross the vapor region to the vapor/liquid two-phase line.  Because the system remains two-phase, we 
are obliged to follow the vapor/liquid line downward, until the partial pressure of benzene decreases by a 
factor of ten.  We then drain the condensed liquid from the system, which does not change our position on 
the P-T phase map.  We then return the total pressure to 1 atm and the temperature to 26°C. 
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4.6  Part (E) second paragraph … 
 
 The gulf air at 100% humidity has a water partial pressure of 0.026 atm, so 95% humidity is a water 
partial pressure of (0.95)(0.026) = 0.025 atm.  The gulf air is 0.025 mol fraction water vapor.  After 
mixing, the mol fraction is 0.012. 

The mixture is at 6°C and contains 1.2 mol% H2O vapor. 

 
4.10  Part (C) Last paragraph on the page … 
 
A point on the operating line is the pair of streams that leave the bottom of the upper portion of the 
absorber, x = K/oil = 0.068/8.5 = 0.008 and y = K/air = 0.0032 (from the graph).   
 
4.13  The flowsheet is missing an arrowhead on the oil recycle 
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4.26 There is an error in the fifth bullet item: 

• the feed needs to be heated before it enters the feed stage, which decreases xDCE and yDCE. 
 

4.31 The compositions of streams 4 and 5 were switched.  The correct solution is shown below. 
 
The key is that the composition of the azeotrope changes with pressure. The azeotrope at 0.2 atm contains 
more acetonitrile than the azeotrope at 1 atm.  At 0.2 atm, one can distill to above 68 mol %, the azeotrope 
at 1 atm.  Distillation at 1 atm begins above the azeotrope and can reach 98 mol % acetonitrile.  One 
possible process is shown below, with the McCabe-Thiele analyses on the following pages.  Note that 
above the azeotrope, water is more volatile than acetonitrile (see temperature-composition diagram on page 
208) and thus the 98 mol % acetonitrile is the bottoms of the distillation column B. 
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An even better process would recycle stream 4.  Stream 4 could be combined with stream 1 and fed 
to the first column at the second stage.  Or stream 4 could be fed into the third stage of the first column. 
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4.33 An improved solution is given below.  The previous solution was correct, but not as clean. 
(A) The optimal liquid-liquid separation is at the widest portion of the liquid+liquid region, 53°C. 
(B) See phase diagram below. 

There are many valid designs for distillation columns 1 and 2.  One design is given on the diagrams. 
(C) Heater 2 is arbitrarily operated at 63°C.  Any temperature between about 62°C and 76°C is valid, 

although not necessarily optimal.  From the McCabe-Thiele analysis on the xW-yW liquid-vapor 
equilibrium diagram, column 1 has 4 stages and an L/V ratio of about 1.65. 

(D) Heater 3 is arbitrarily operated at 63.5°C.  Any temperature between about 62°C and 72°C is valid, 
although not necessarily optimal.  From the McCabe-Thiele analysis on the xW-yW liquid-vapor 
equilibrium diagram, column 2 has 4 stages and an L/V ratio of about 1.5. 

 
phase diagram for W-R mixtures at 1 atm 
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x-y diagram for liquid+vapor systems of W - R mixtures at 1 atm 
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4.40 The process flowsheet had a typographical error;  the composition of the aniline-rich product should 
be < 2% MCH.  Also, the heptane recycle needed a purge.  Here is a corrected flowsheet: 
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5.18 The solution to part (b) is omitted from the solution manual. 
(B)  We seek the upward velocity of the popped corn, which is the upward velocity of the hot air, minus 
the terminal velocity of the popped corn.  We repeat the calculation of part (a), but with the parameters for 
popped corn. 
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As in part (a) we solve the two simultaneous equations for v to obtain v = 1.6 m/s at Re = 1500 and F = 0.4.  
The (untruncated) velocity of the hot air is 14 m/s.  Thus the upward velocity of the popped corn is 14 - 1.6 
= 12.4 m/s. Truncating to two significant figures, 

The velocity of the popped corn is 12 m/s. 
 
6.2 Add the following to (C). 
(C)  Thus the equilibrium concentration of X depends on the rate of decomposition of X, as expected.  
Also, the rate that the concentration reaches equilibrium depends on the rate of decomposition of X as 
shown qualitatively in the plot below.  Also shown is the predicted result for no decomposition (part B) in 
which the concentration of X increases linearly. 
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