

EngrD 2190 - Chemical Process Design & Analysis

Process Economic Analysis with Spreadsheets - 2025

There are two options for the reactor:

- Type 1: High conversion, modest selectivity of P over B .
- Type 2: Low conversion, good selectivity of P over B .

There are two options for the first separator:

- Type 1: High recovery of P ; low $P:A$ ratio in liquid the liquid stream.
- Type 2: Low recovery of P ; moderate $P:A$ ratio in liquid the liquid stream.

There are two options for the (optional) second separator:

- Type 1: Excellent separation; high $A:B$ ratio in the tops, low $A:B$ ratio in the bottoms).
- Type 2: Modest separation; good $A:B$ ratio in the tops, moderate $A:B$ ratio in the bottoms.

Your fiducial goal is to maximize the ROI for a configuration based on the last digit of your CU NetID.

CU NetID last digit	2	3	4	5	6	7	8	9
reactor type	1	1	1	1	2	2	2	2
separator I type	1	1	2	2	1	1	2	2
separator II type	1	2	1	2	1	2	1	2

Note: You may find that the highest ROI is achieved with no Separator II for your configuration. With no Separator II, the by-product B is eliminated in the purge only.

In general, a process unit with better specifications has a higher price and costs more to operate. There is economy of scale; the equipment price is proportional to $(\text{capacity})^{0.6}$. Reactor and separator prices are given by the formula $\text{price} = k \times (F_T)^{0.6}$, where k is a constant conversion factor, F_T is the flow through the unit, in mol/day, and price is in \$. For example, a reactor with double the capacity costs only 1.5 times as much. Operating costs for reactors and separators are given by the formula $\text{operating cost} = c \times F_T$; the units of operating cost are \$/year.

	k	c
reactor, type 1 (conversion = 0.85, $P:B$ = 3:1)	110,000	2,700
reactor, type 2 (conversion = 0.55, $P:B$ = 12:1)	80,000	2,300
separator I, type 1 (99% P in tops, $P:A$ = 1:50 in bottoms)	50,000	2,600
separator I, type 2 (99% P in tops, $P:A$ = 1:5 in bottoms)	35,000	2,000
separator II, type 1 ($A:B$ = 100:1 in tops, $A:B$ = 1:50 in bottoms)	80,000	5,000
separator II, type 2 ($A:B$ = 30:1 in tops, $A:B$ = 1:10 in bottoms)	32,000	2,800

Reactant A costs \$25/mol. Product P (99% P) sells for \$90/mol. Disposal of waste contaminated with B costs \$15/mol.

Equipment depreciation is calculated with a straight-line formula, with a lifetime of 10 years. The process operates 365 days/year.

Equipment purchase costs are paid at the beginning of the year. Operating costs are paid during the year. Revenue from P sales is received at the end of the year. You cannot spend money from sales revenue to purchase equipment and operate your process the first year.

Assignment: Start with \$10,000,000. and maximize the ROI for your process. Complete the Process Design & Operation form with your Equipment Purchases and Operating Parameters and submit in lecture or deliver to the EngrD 2190 cabinet by **Monday October 20 at noon**. Send your spreadsheet as an attachment to tmd10@cornell.edu by **Monday October 20 at noon**.

IMPORTANT: The spreadsheet you deliver as an attachment **must** be named “EngrD 2190 Spreadsheet - <your name>.” Files with other names, such as “my spreadsheet” will be discarded.