Your company has decided to produce \(P \) by the reaction \(A \rightarrow P \). Unfortunately, there is a parallel reaction, \(A \rightarrow X \). Both reactions are irreversible and both reactions are incomplete. Reactant \(A \) is available only as a mixture with inert impurity \(I \).

\(A, I, \) and \(P \) have identical boiling points; we obtain pure \(P \) with a liquid-solid separator. But the solids \(A, I, \) and \(X \) retain some liquid \(P \).

A generic process is shown below. To produce and sell product \(P \), you need only a reactor and a liquid-solid separator. You have three options for the \(A+I+P+X \) mixture in the liquid-solid separator bottoms stream: (1) you may discard the mixture by sending 100\% of the stream to the purge, or (2) you may recycle some of the mixture, for example, by purging 50\% and sending 50\% through the recycle, or (3) you may purchase a second separator to separate and sell by-product \(X \). If you wish to produce \(X \), the bypass plus purge must be less than 100\%.

There are two grades of reactant purity. Grade 1 mixture is high purity \(A \) and is expensive. Grade 2 mixture is modest purity \(A \) and is less expensive.

There are two types for the reactor. Reactor Type 1 has a high conversion of \(A \) but has modest selectivity for \(P \) over \(X \). Reactor Type 2 has a lower conversion of \(A \), but better selectivity for \(P \) over \(X \).

There are two types for the liquid-solid separator. Both types produce pure \(P \), but differ by the amount of \(P \) retained by the solids. Liquid-solid separator Type 1 recovers more \(P \). Liquid-solid separator Type 2 retains more \(P \) in the solids stream but is less expensive to operate.

Disposal of the purged stream requires special treatment and is expensive.