EngrD 2190 — Lecture 28

Concept: Dimensional Analysis and Dynamic Scaling
Context: Universal Scaling of a Pendulum

Defining Question: Why do you need not fear gigantic ants
or gargantuan mosquitos?

Read Chapter 5 pp. 431-436
Dynamics of Walking and Running.
Lecture 29 will follow the textbook.
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(data from exercise 4.19)
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Dimensional Analysis
and Dynamic Scaling









A ‘Water Bear’ (aka a Tardigrade) - Nature’s Toughest Animal






Fantastic Voyage (1966)



Fantastic Voyage (1966)






Mosquito! (1995)



Them! (1954)



The Deadly Mantis (1957)



The Deadly Mantis (1957)



Starship Troopers (1997)



One Million BC (1940)



The Giant Gila Monster (1959)



The Lost World (1960)















The Shobijin
from Mothra
(1961)

Gulliver and
the Lilliputians












Dynamic Scaling Example 1 - Motion Through a Fluid

Swimmer stops swimming - swimmer glides for 1-3 body lengths



Dynamic Scaling Example 1 - Motion Through a Fluid

Propellers stop - ship glides for ~100 ship lengths



Dynamic Scaling Example 1 - Motion Through a Fluid

Propulsion stops - paramecium glides for ~0 body lengths



Dynamic Scaling Example 1 - Motion Through a Fluid

Inertial forces
frictional forces

Key ratio for motion through fluids:

Ratio is negligible for microfluidics



Dynamic Scaling Example 1 - Motion Through a Fluid

Inertial forces

Key ratio for motion through fluids: ——
frictional forces

Ratio iIs large for commercial chemical processes
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Tomgorgry Pipa Sectan

Partial oxidation of cyclohexane to cyclohexanol.
First step in process to synthesize Nylon.

Reactor cascade connected by 20” pipes.

Flow Is 40 tons/minute



Flixborough England 1974

Explosion killed 28 and caused $450,000,000 in damages.



Dynamic Scaling Example 2 - Distillation Column Scale-Up

McCabe-Thiele analysis: 10 equilibrium stages

mgg&g . bench scale actual
SR o model column (x100)
T T total height: 60 cm 60 m
¥
weir tray diameter. 10 cm 10 m
|| B e R BB psante| . i
;%ﬁfgﬁ%%ig%j%_@_ vapor holes in sieve tray: 3 mm 30 cm (~14 inches)
_______ j il
e Liquid depth on tray: 2 cm 2 m (~6Y: feet)
J Hll— doaTLCOtTer

The bench-scale model worked well. The commercial-scale unit failed. Why?

Flow behavior depends on viscosity, density, and surface tension,
which cannot be scaled.



Dynamic Scaling Example 3 - Chemical Reactor Scale-Up

heat
A
CH2=CH2 + 02 § ~ H2C—CH2
C : g

desired reaction: CH, =CH, + %0, — CH,(O)CH, + 105 kJ/mol

undesired reaction: CH, =CH, + 20, —» 2CO, + 2H,0 + 1320 kJ/mOI

A I undesired reaction bench scale actual
100,000— model reactor (x100)
=11 - i ]
eaction 10,000 : desired reaction reactor diameter: 1 cm 1m
1,000 —
e : reactor length: 10 cm 10 m
100 7 |
10— 1 worked blowed
1 — I ﬁne Up'
|
l = Why?

reactor temperature
temperature rate energy generated oc mass in reactor oc reactor volume = Lx(rtr?

rate energy removed oc reactor surface area = Lx(2nxr)

So how do we scale-up the reactor?



Dynamic Scaling Example 3 - Chemical Reactor Scale-Up

% heat
A

CH,=CH, + O, .626 § )j H,C—CHs
)

So how do we scale-up the reactor?

Many small reactors!



Chemical Process Modeling and Analysis

Mathematical Modeling
process flowsheet — equations

Graphical Modeling
process flowsheet — paths on phase maps
process unit — operating lines

Dimensional Analysis

bench-scale unit — commercial-scale unit  scale up
bench-scale unit — micro-scale unit scale down

moderate time interval (minutes) — long time interval (years)
moderate time interval (minutes) — short time interval (msec)

In general: convenient size, duration, or cost — Inconvenient or inaccessible

How? What are the rules?



Dimensional Analysis Example 1: A Pendulum

How does period change with pendulum length? Mass? Angle?

x100
O

Dimensional Analysis and Dynamic Scaling!






Dimensions and Units

Table 5.1 Base dimensions Table 5.2 The SI and English systems of base units
base Tinension symbol base dimension ST (mks) English
length T length, L. meter, m foot, ft
N M mass, M kilogram, kg pound-mass, lby,
e T time, T second, s second, s
temperature © temperature, © Celsius, °C, or Kelvin, K Fahrenheit, °F, or Rankine, °R
M N amount, N mole mole
electric charge Q
luminous intensity |
Table 5.4 Derived units and dimensions
quantity dimensions  units in SI
volume ]2 m>
velocity L/T m/s
acceleration I m/s?
momentum (= mass x velocity) ML/T kg-m/s
force (= mass x acceleration) ML/T? kg-m/s*? = newton (N)
pressure (= force/area) M/LT? kg/m-s? = N/m? = pascal (Pa)
energy (= Yanmnv? or force x distance) ML2/T? kg-m?/s> = N-m = joule (J)
power (= energy/time) ML2/T? kgm?/s? = J/s = watt (W)



Dimensional Analysis Example 1: A Pendulum

_arclength
o radius

Q\ () [a] E = (none)

Table 5.5. The parameters of a pendulum

physical quantity symbol dimensions
period of oscillation b T

length of pendulum 4 L

mass of pendulum m M
gravitational acceleration g LA
amplitude o (none)

=

will always be given



Dimensional Analysis Example 1: A Pendulum

Table 5.5. The parameters of a pendulum

physical quantity symbol dimensions
o period of oscillation Iy T
length of pendulum T
Q\ < ) mass of pendulum m M
gravitational acceleration g LAL?
amplitude oL (none)

We seek an equation of the form | t,[=[f(¢, m,g,a)

7

has dimensions of time must also have dimensions of time

The function cannot contain m.  Why? Because no other parameter has dimensions of mass.

Can the function contain #?  Yes, because we can cancel ¢’s dimensions with g.

L / L
[z]:L’ [g]:—2 — |:—}:—:T2
T g Vz
T

If /is in the function, it is present as the ratio //g.

1/2
: : 14 /2
Furthermore, the ratio must be present as its square root. K) ] = (Tz)l =T



Dimensional Analysis Example 1: A Pendulum

Table 5.5. The parameters of a pendulum

physical quantity symbol dimensions
o period of oscillation Iy T
length of pendulum T
Q\ < ) mass of pendulum n M
gravitational acceleration g LAL?
amplitude oL (none)

1/2
Dimensional analysis yields  t, = (é) f(a)

The pendulum period of oscillation scales as the square root of the length.
For our model pendulum (¢ =10 cm) we measure t, = 0.64 sec.
For large pendulum (¢ =10 m) we predict t, = 10072 x 0.64 sec = 6.4 sec.
Without dynamic scaling one would naively predict t, = 100 x 0.64 sec = 64 sec.

This prediction is valid only for the same angle o in the model and the large pendulum.



Dimensional Analysis Example 1: A Pendulum

Table 5.5. The parameters of a pendulum

physical quantity symbol dimensions
e period of oscillation L T
O length of pendulum L
T < ) mass of pendulum m M
gravitational acceleration g L/T?
amplitude o (none)
/ 1/2
Dimensional analysis yields  t, = (—j f(o)
g
The pendulum period depends on 7 and a. only.
A o = /4 To fin_d the function f we must conduct
experiments, but our experimental agenda
o = /6 Is shortened by dimensional analysis;
vary only /7 and o .
t o = 1/8 y only
P Experiments show the period is independent of o .
1/2
14
t, = 27{—)
> g9

(6/9)1/2



