

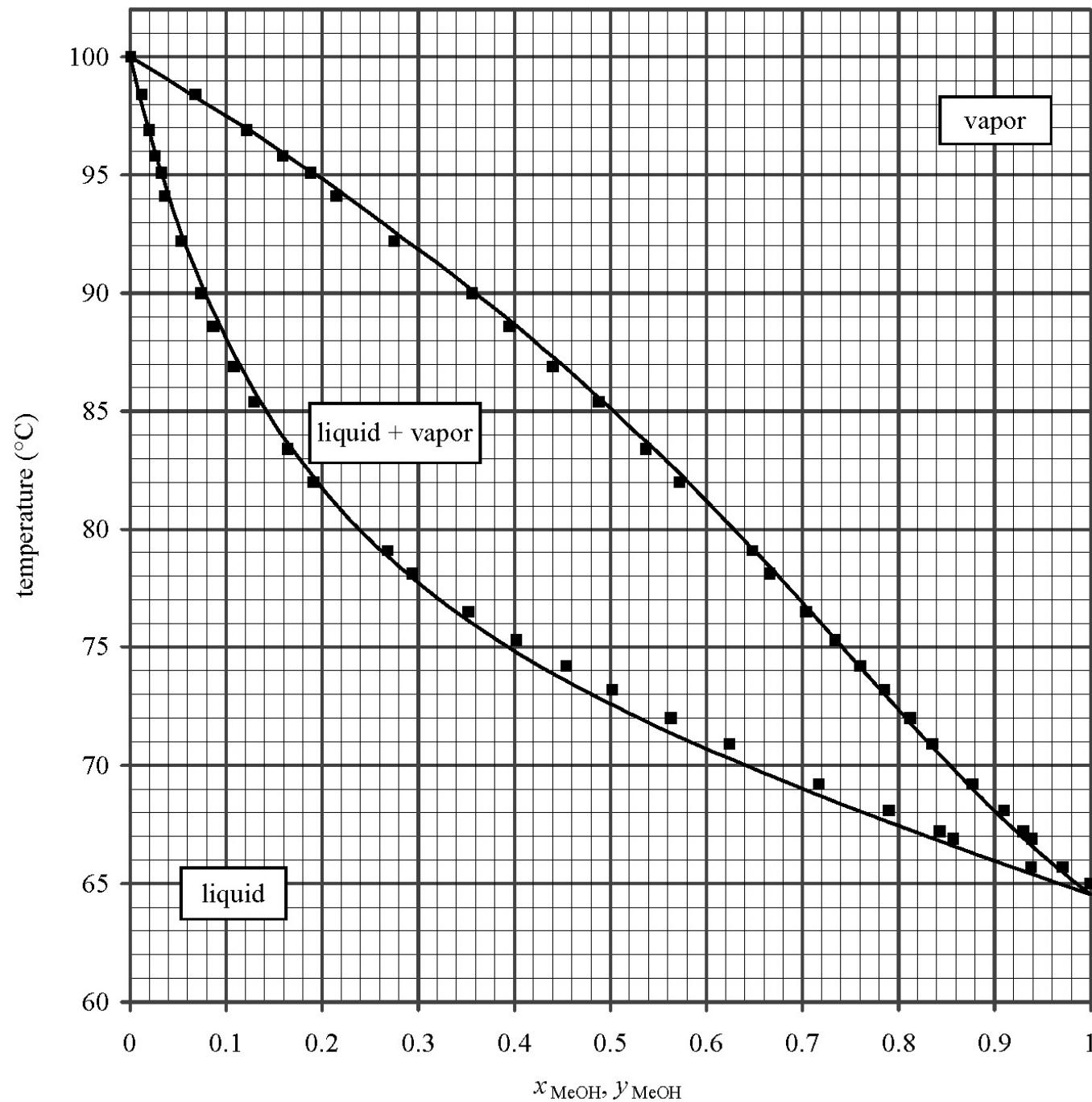
# EngrD 2190 – Lecture 28

Concept: Dimensional Analysis and Dynamic Scaling

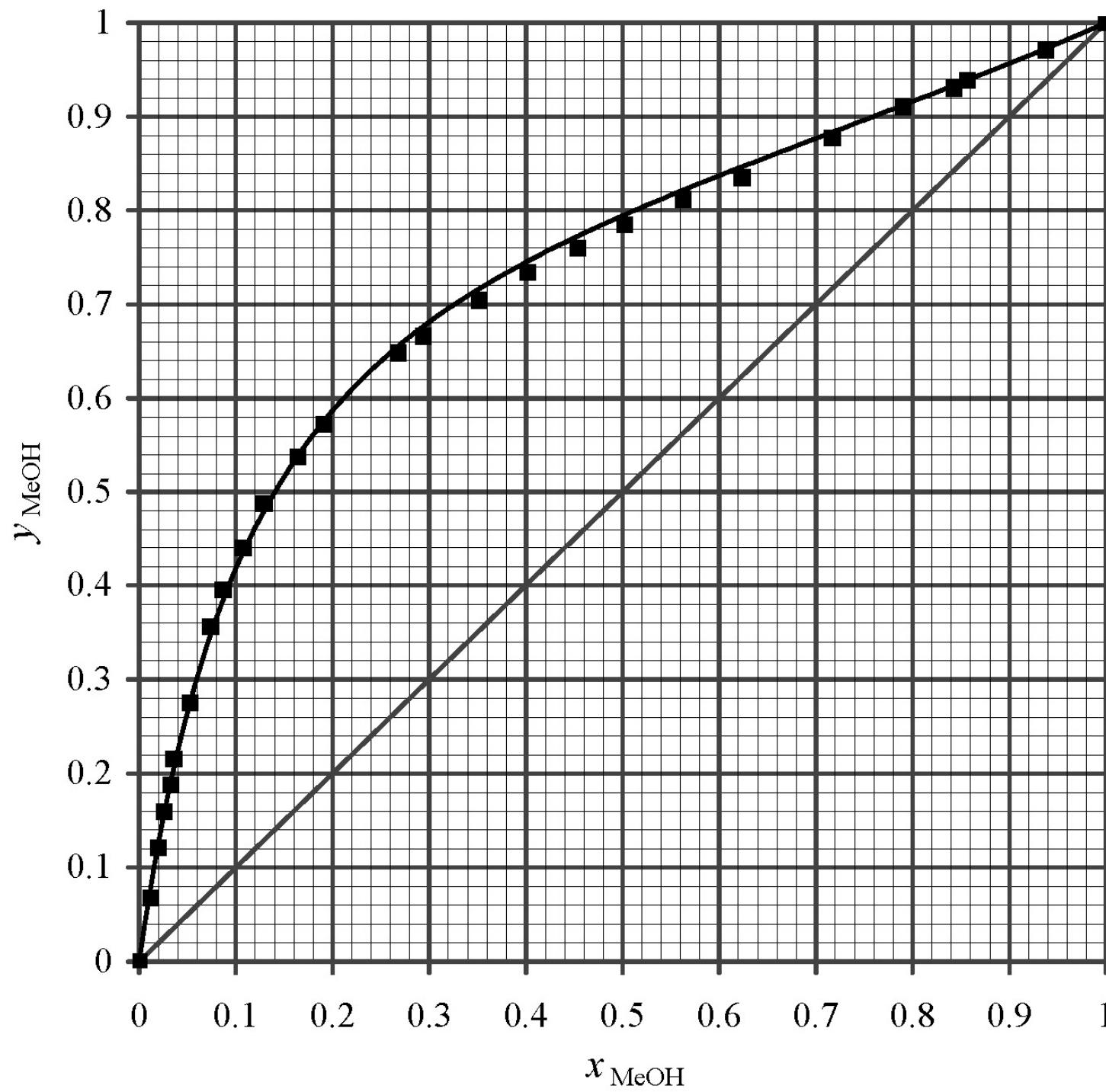
Context: Universal Scaling of a Pendulum

Defining Question: Why do you need not fear gigantic ants or gargantuan mosquitos?

Read Chapter 5 pp. 431-436  
Dynamics of Walking and Running.  
Lecture 29 will follow the textbook.



temperature-composition phase diagram for methanol+H<sub>2</sub>O mixtures at 1 atm  
(data from exercise 4.19)



(data from exercise 4.19)

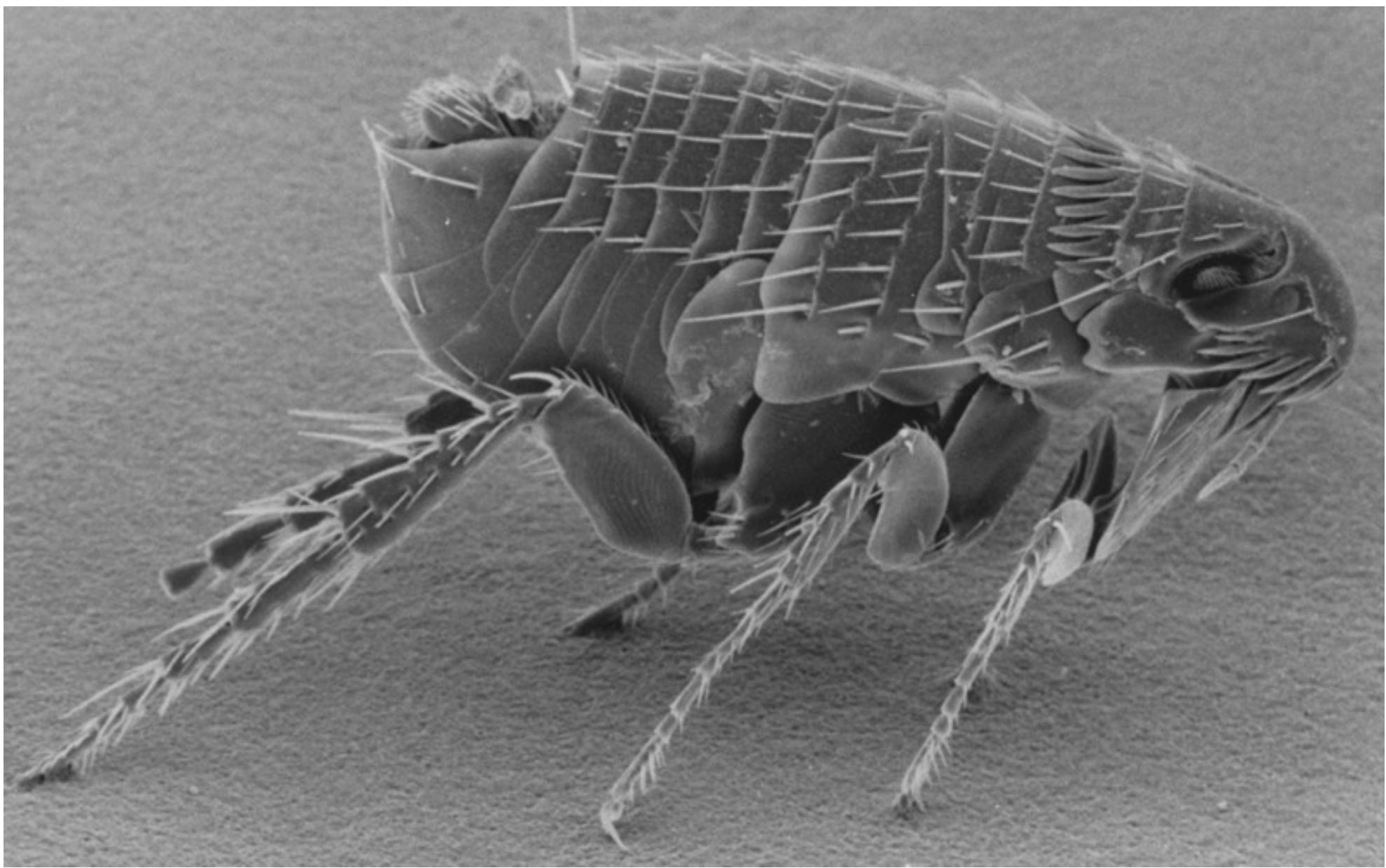
# Dimensional Analysis and Dynamic Scaling

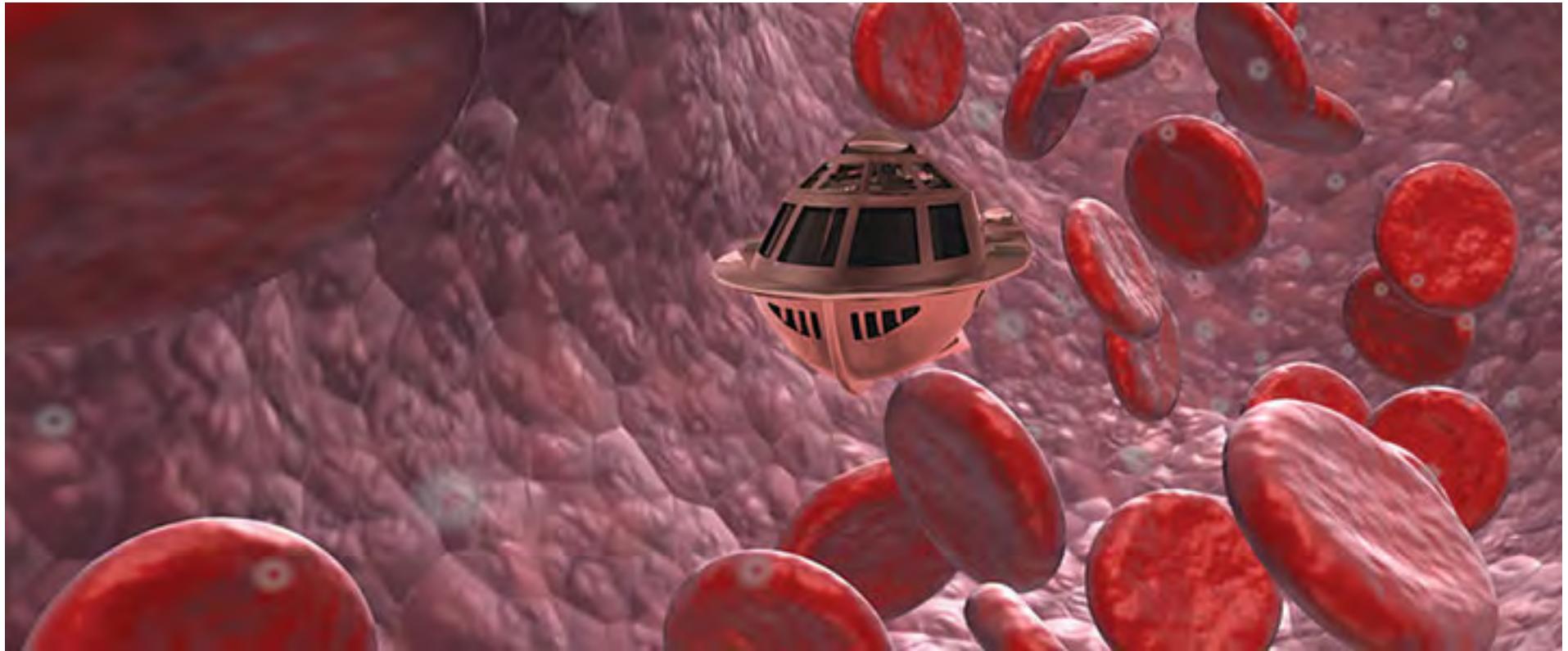




## A ‘Water Bear’ (aka a Tardigrade) - Nature’s Toughest Animal







Fantastic Voyage (1966)



Fantastic Voyage (1966)





Mosquito! (1995)



Them! (1954)



The Deadly Mantis (1957)



1830-25

The Deadly Mantis (1957)



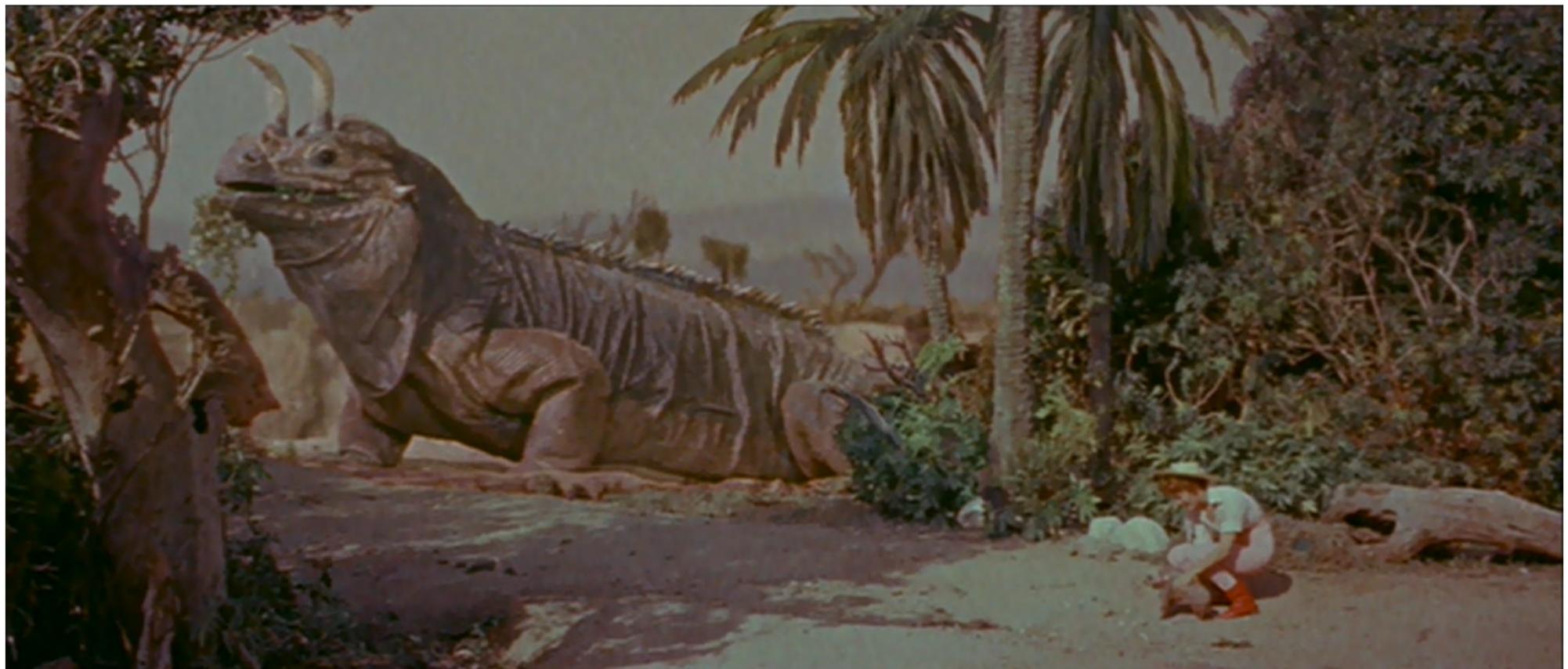
Starship Troopers (1997)



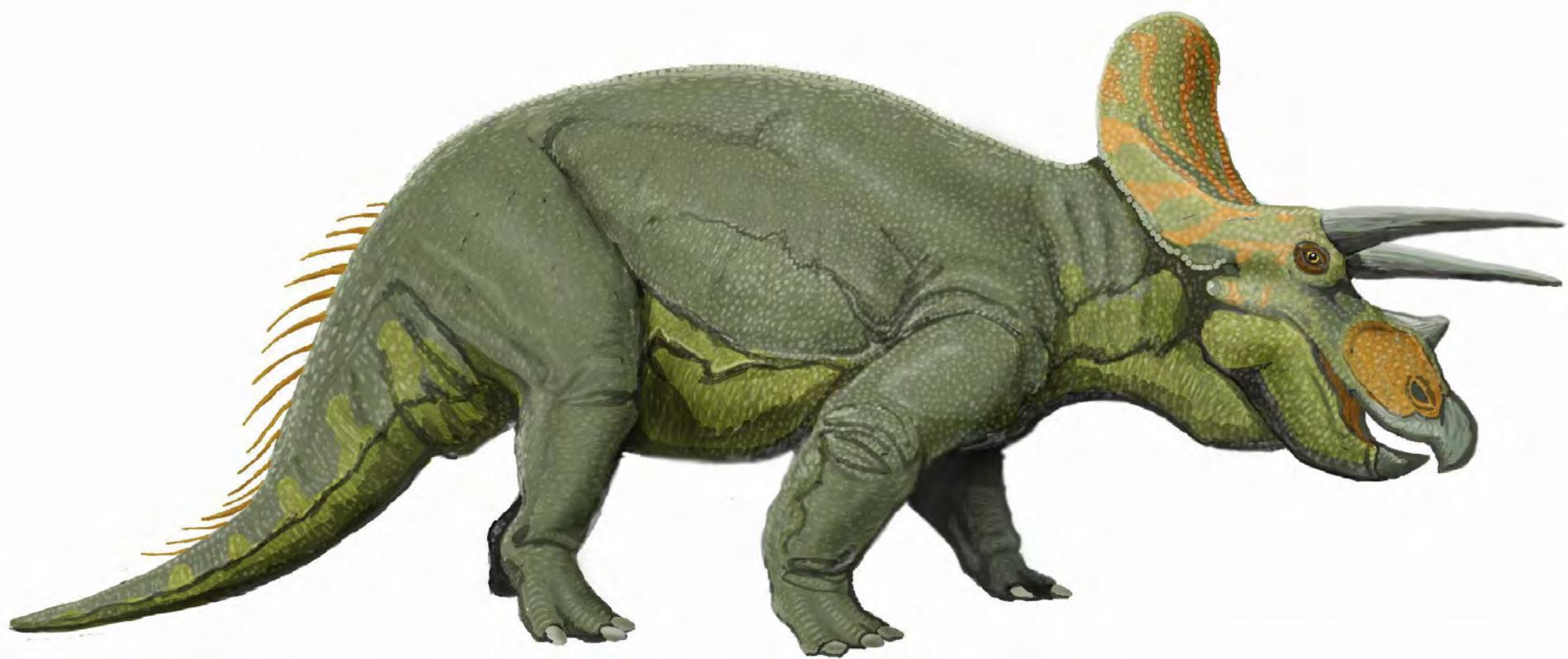
One Million BC (1940)



The Giant Gila Monster (1959)



The Lost World (1960)



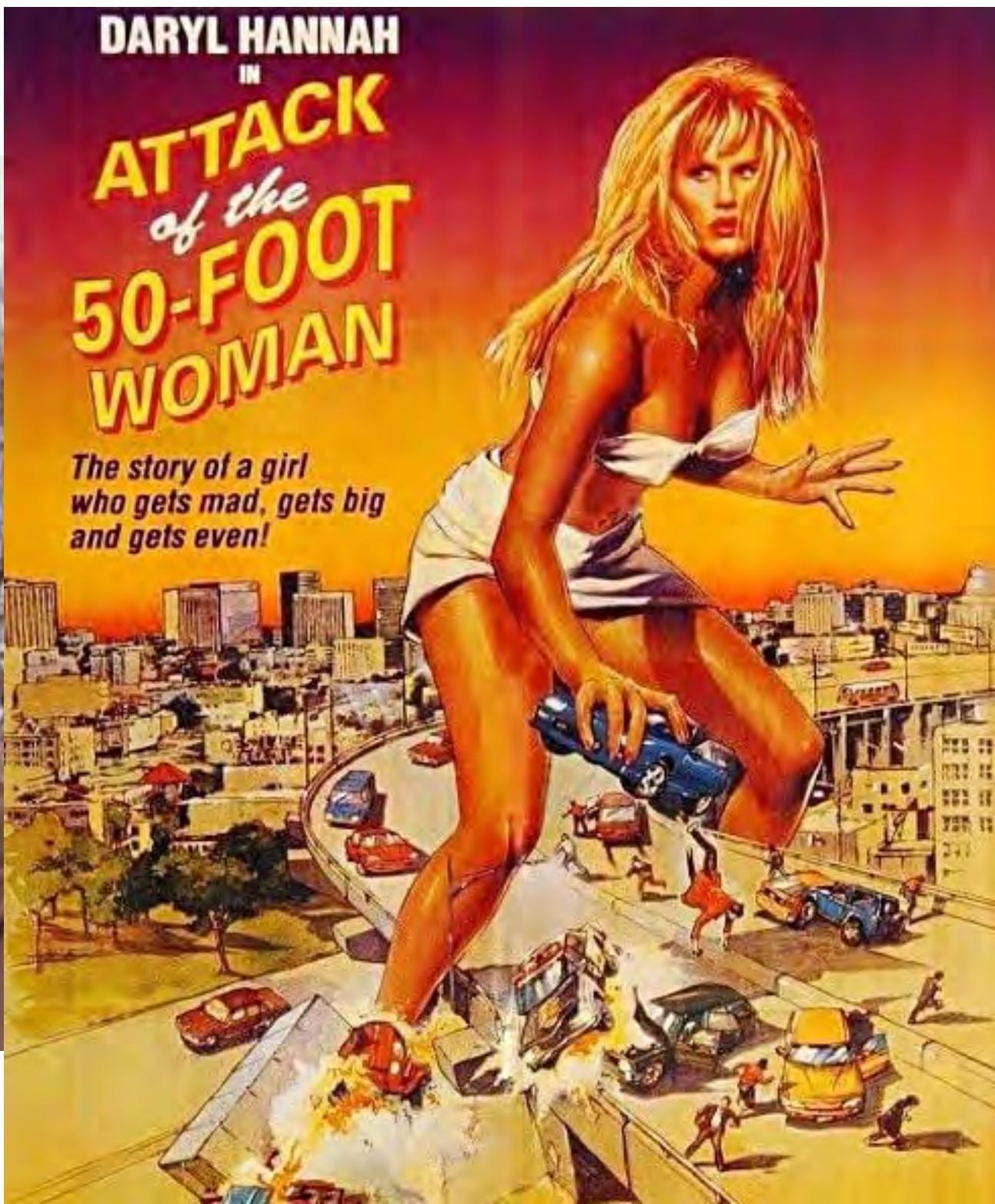




ALLIED ARTISTS PICTURES presents

# ATTACK OF THE 50 FT. WOMAN

starring  
ALLISON HAYES · WILLIAM HUDSON · WETTE VICKERS  
produced by  
BERNARD WOOLNER · NATHAN HERTZ · MARK HANNA





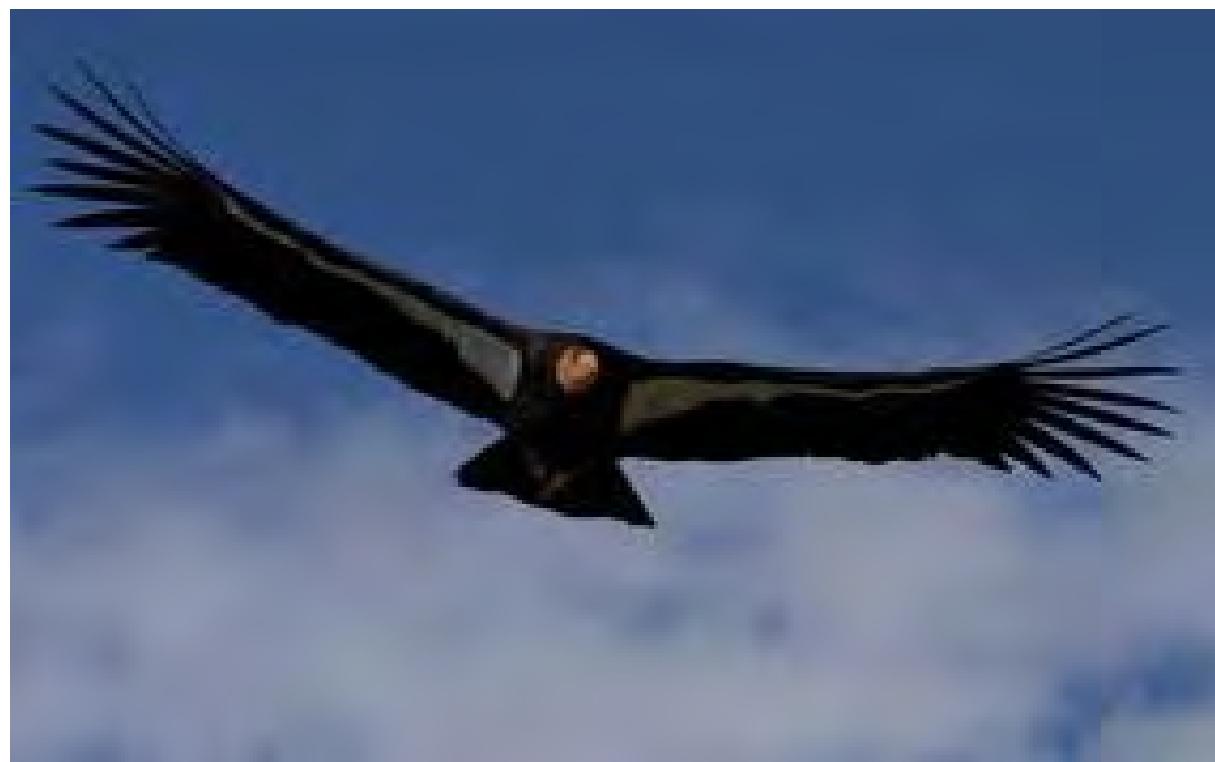
The Shobijin  
from *Mothra*  
(1961)



Gulliver and  
the Lilliputians







# Dynamic Scaling Example 1 - Motion Through a Fluid



Swimmer stops swimming - swimmer glides for 1-3 body lengths

# Dynamic Scaling Example 1 - Motion Through a Fluid



Propellers stop - ship glides for  $\sim$ 100 ship lengths

# Dynamic Scaling Example 1 - Motion Through a Fluid



Propulsion stops - paramecium glides for ~0 body lengths

# Dynamic Scaling Example 1 - Motion Through a Fluid

Key ratio for motion through fluids: 
$$\frac{\text{inertial forces}}{\text{frictional forces}}$$

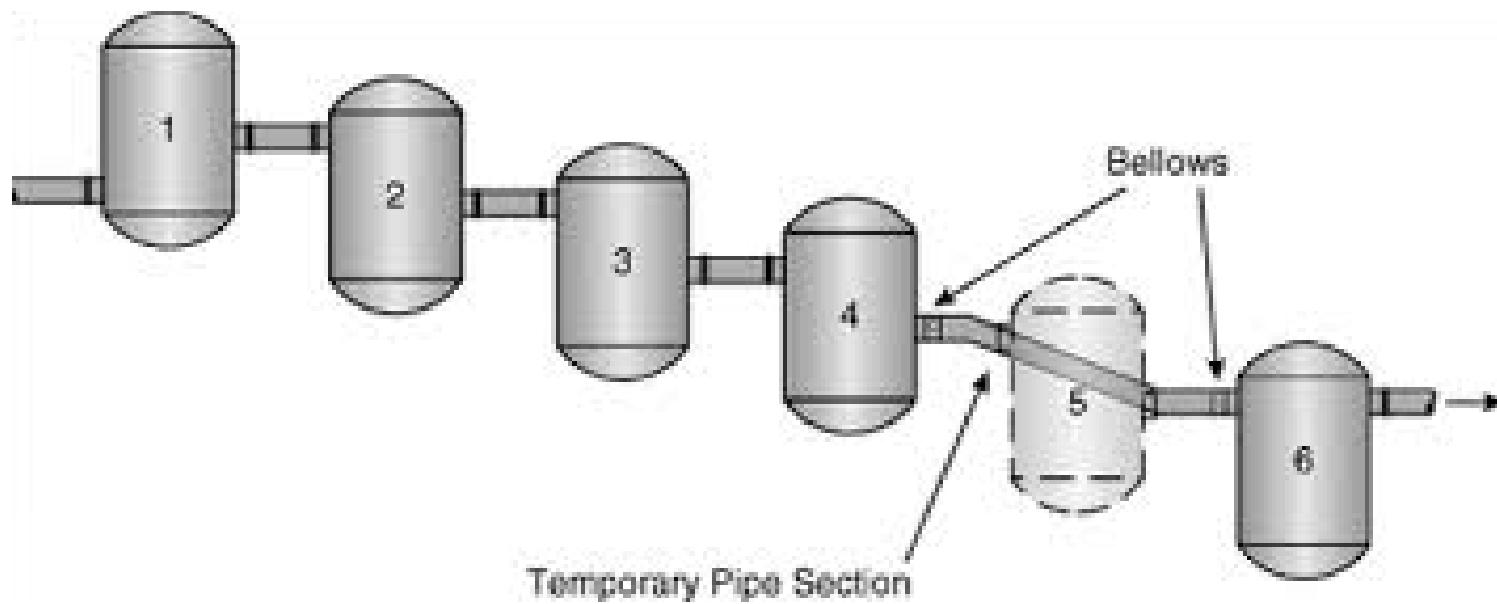
Ratio is negligible for microfluidics



# Dynamic Scaling Example 1 - Motion Through a Fluid

Key ratio for motion through fluids:  $\frac{\text{inertial forces}}{\text{frictional forces}}$

Ratio is large for commercial chemical processes



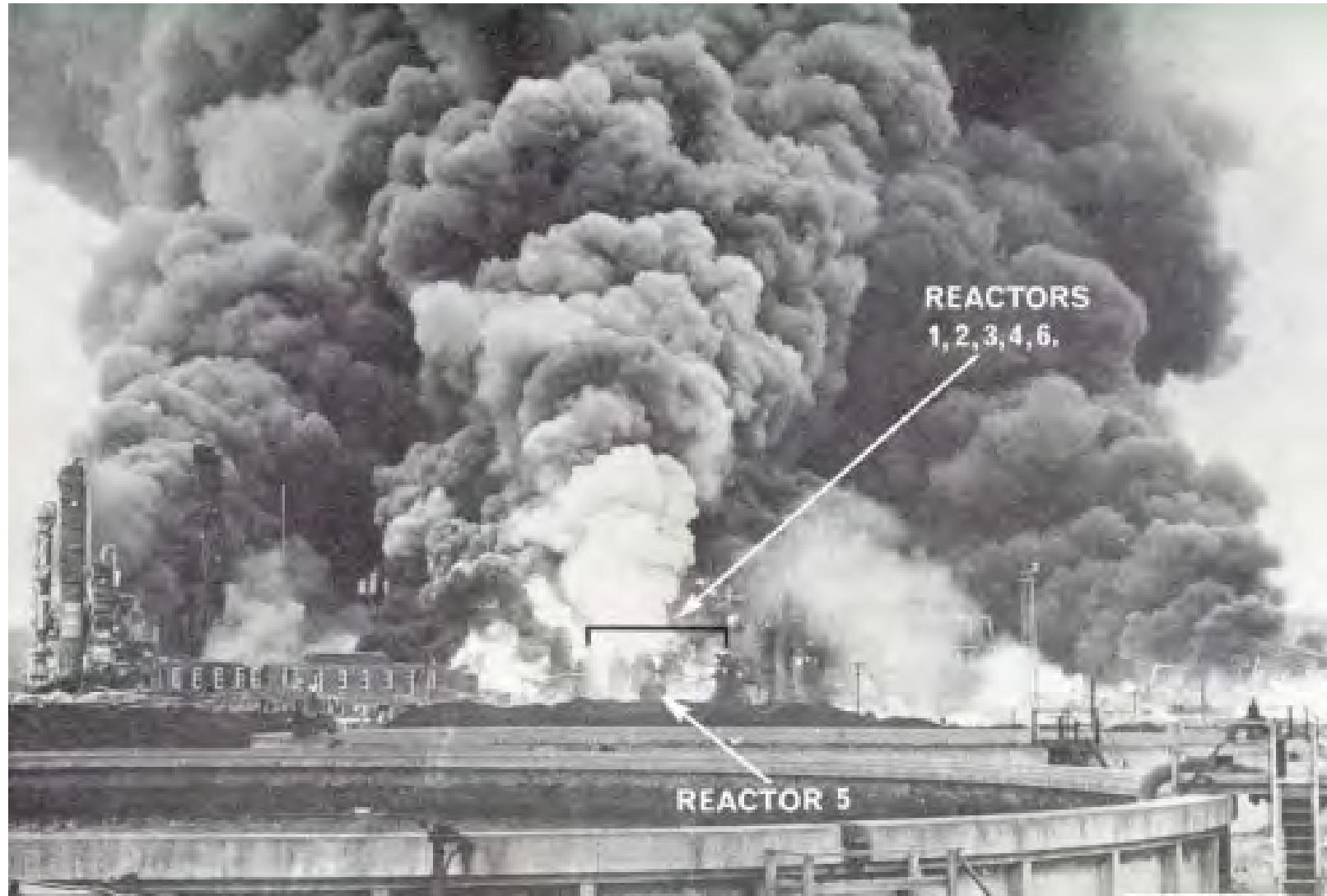
Partial oxidation of cyclohexane to cyclohexanol.

First step in process to synthesize Nylon.

Reactor cascade connected by 20" pipes.

Flow is 40 tons/minute

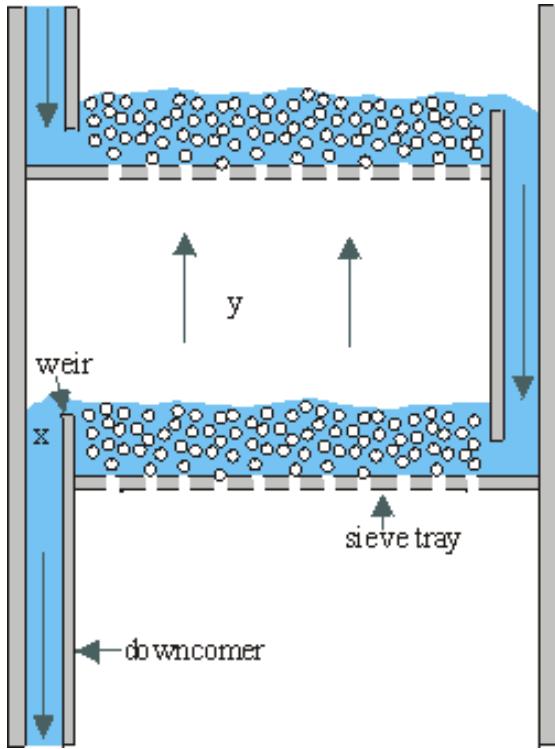
# Flixborough England 1974



Explosion killed 28 and caused \$450,000,000 in damages.

# Dynamic Scaling Example 2 - Distillation Column Scale-Up

McCabe-Thiele analysis: 10 equilibrium stages

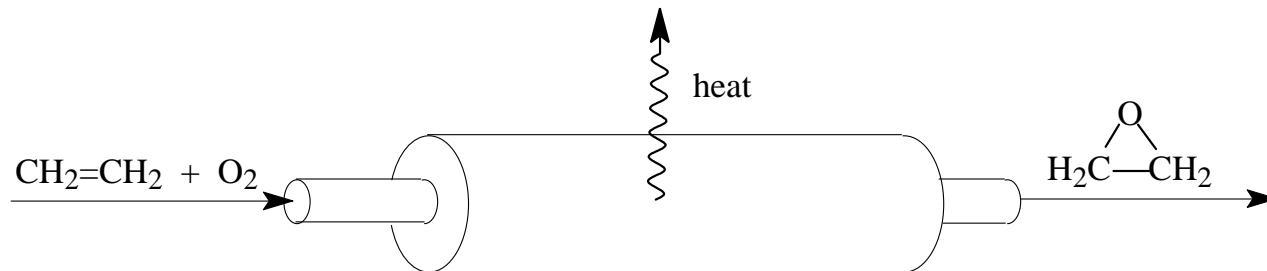
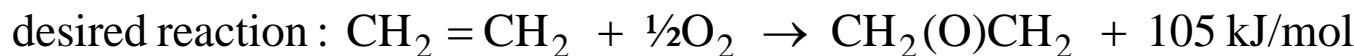
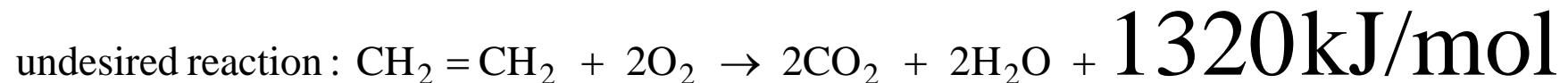
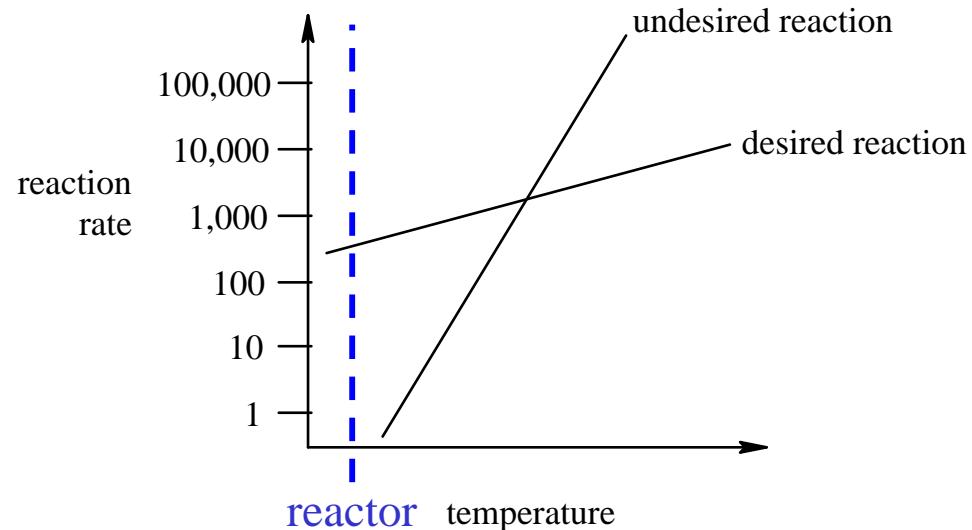


| bench scale<br>model            | actual<br>column ( $\times 100$ ) |
|---------------------------------|-----------------------------------|
| total height: 60 cm             | 60 m                              |
| tray diameter: 10 cm            | 10 m                              |
| vapor holes in sieve tray: 3 mm | 30 cm (~14 inches)                |
| Liquid depth on tray: 2 cm      | 2 m (~6½ feet)                    |

The bench-scale model worked well. The commercial-scale unit failed. Why?

*Flow behavior depends on viscosity, density, and surface tension,  
which cannot be scaled.*

# Dynamic Scaling Example 3 - Chemical Reactor Scale-Up



| bench scale<br>model   | actual<br>reactor ( $\times 100$ ) |
|------------------------|------------------------------------|
| reactor diameter: 1 cm | 1 m                                |
| reactor length: 10 cm  | 10 m                               |

worked  
fine

blowed  
up!

Why?

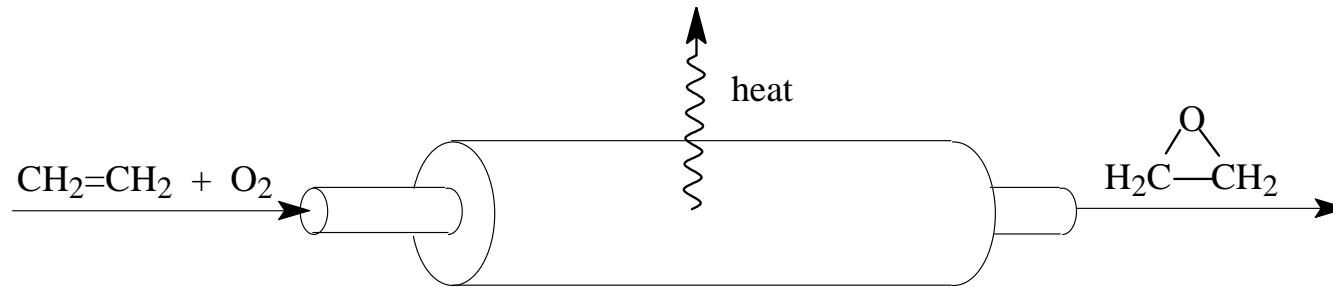
temperature

rate energy generated  $\propto$  mass in reactor  $\propto$  reactor volume  $= L \times (\pi r^2)$

rate energy removed  $\propto$  reactor surface area  $= L \times (2\pi r)$

*So how do we scale-up the reactor?*

# Dynamic Scaling Example 3 - Chemical Reactor Scale-Up



*So how do we scale-up the reactor?*

*Many small reactors!*



# Chemical Process Modeling and Analysis

## Mathematical Modeling

process flowsheet → equations

## Graphical Modeling

process flowsheet → paths on phase maps

process unit → operating lines

## Dimensional Analysis

bench-scale unit → commercial-scale unit      scale up

bench-scale unit → micro-scale unit      scale down

moderate time interval (minutes) → long time interval (years)

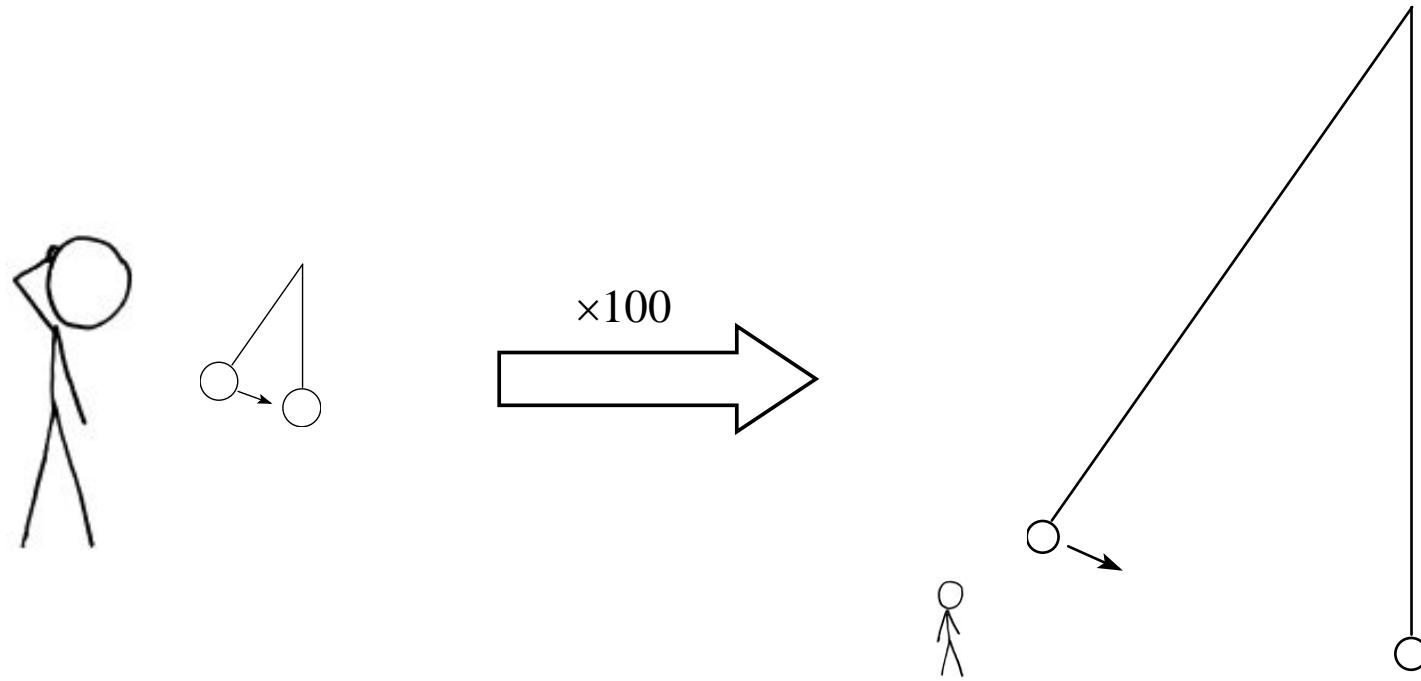
moderate time interval (minutes) → short time interval (msec)

In general: convenient size, duration, or cost → inconvenient or inaccessible

*How? What are the rules?*

# Dimensional Analysis Example 1: A Pendulum

How does period change with pendulum length? Mass? Angle?



Dimensional Analysis and Dynamic Scaling!



# Dimensions and Units

**Table 5.1 Base dimensions**

| base dimension     | symbol   |
|--------------------|----------|
| length             | L        |
| mass               | M        |
| time               | T        |
| temperature        | $\Theta$ |
| amount             | N        |
| electric charge    | Q        |
| luminous intensity | I        |

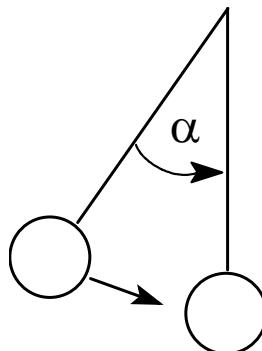
**Table 5.2 The SI and English systems of base units**

| base dimension        | SI (mks)                            | English                                           |
|-----------------------|-------------------------------------|---------------------------------------------------|
| length, L             | meter, m                            | foot, ft                                          |
| mass, M               | kilogram, kg                        | pound-mass, $lb_m$                                |
| time, T               | second, s                           | second, s                                         |
| temperature, $\Theta$ | Celsius, $^{\circ}C$ , or Kelvin, K | Fahrenheit, $^{\circ}F$ , or Rankine, $^{\circ}R$ |
| amount, N             | mole                                | mole                                              |

**Table 5.4 Derived units and dimensions**

| quantity                                                | dimensions | units in SI                                     |
|---------------------------------------------------------|------------|-------------------------------------------------|
| volume                                                  | $L^3$      | $m^3$                                           |
| velocity                                                | $L/T$      | $m/s$                                           |
| acceleration                                            | $L/T^2$    | $m/s^2$                                         |
| momentum (= mass $\times$ velocity)                     | $ML/T$     | $kg \cdot m/s$                                  |
| force (= mass $\times$ acceleration)                    | $ML/T^2$   | $kg \cdot m/s^2 \equiv$ newton (N)              |
| pressure (= force/area)                                 | $M/LT^2$   | $kg/m \cdot s^2 = N/m^2 \equiv$ pascal (Pa)     |
| energy (= $\frac{1}{2}mv^2$ or force $\times$ distance) | $ML^2/T^2$ | $kg \cdot m^2/s^2 = N \cdot m \equiv$ joule (J) |
| power (= energy/time)                                   | $ML^2/T^3$ | $kg \cdot m^2/s^3 = J/s \equiv$ watt (W)        |

# Dimensional Analysis Example 1: A Pendulum



$$\alpha = \frac{\text{arc length}}{\text{radius}}$$

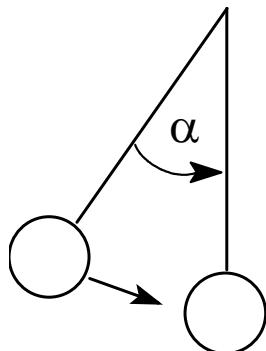
$$[\alpha] = \frac{L}{L} = (\text{none})$$

**Table 5.5. The parameters of a pendulum**

| physical quantity          | symbol   | dimensions       |
|----------------------------|----------|------------------|
| period of oscillation      | $t_p$    | T                |
| length of pendulum         | $\ell$   | L                |
| mass of pendulum           | $m$      | M                |
| gravitational acceleration | $g$      | L/T <sup>2</sup> |
| amplitude                  | $\alpha$ | (none)           |

will always be given

# Dimensional Analysis Example 1: A Pendulum



**Table 5.5. The parameters of a pendulum**

| physical quantity          | symbol   | dimensions       |
|----------------------------|----------|------------------|
| period of oscillation      | $t_p$    | T                |
| length of pendulum         | $\ell$   | L                |
| mass of pendulum           | $m$      | M                |
| gravitational acceleration | $g$      | L/T <sup>2</sup> |
| amplitude                  | $\alpha$ | (none)           |

We seek an equation of the form

$$t_p = f(\ell, m, g, \alpha)$$

has dimensions of time

must also have dimensions of time

The function cannot contain  $m$ . Why? Because no other parameter has dimensions of mass.

Can the function contain  $\ell$ ? Yes, because we can cancel  $\ell$ 's dimensions with  $g$ .

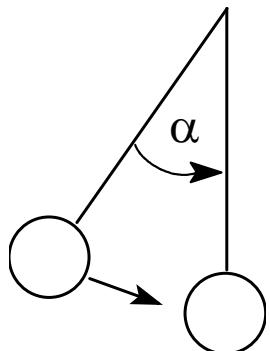
$$[\ell] = L, \quad [g] = \frac{L}{T^2} \quad \Rightarrow \quad \left[ \frac{\ell}{g} \right] = \frac{L}{\cancel{L}/T^2} = T^2$$

If  $\ell$  is in the function, it is present as the ratio  $\ell/g$ .

Furthermore, the ratio must be present as its square root.

$$\left[ \left( \frac{\ell}{g} \right)^{1/2} \right] = (T^2)^{1/2} = T$$

# Dimensional Analysis Example 1: A Pendulum



**Table 5.5. The parameters of a pendulum**

| physical quantity          | symbol   | dimensions       |
|----------------------------|----------|------------------|
| period of oscillation      | $t_p$    | T                |
| length of pendulum         | $\ell$   | L                |
| mass of pendulum           | $m$      | M                |
| gravitational acceleration | $g$      | L/T <sup>2</sup> |
| amplitude                  | $\alpha$ | (none)           |

Dimensional analysis yields 
$$t_p = \left( \frac{\ell}{g} \right)^{1/2} f(\alpha)$$

The pendulum period of oscillation scales as the square root of the length.

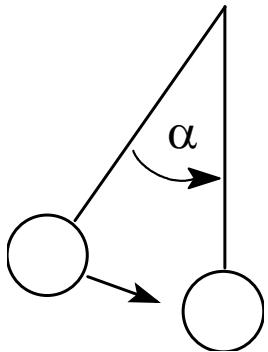
For our model pendulum ( $\ell = 10$  cm) we measure  $t_p = 0.64$  sec.

For large pendulum ( $\ell = 10$  m) we predict  $t_p = 100^{1/2} \times 0.64$  sec = 6.4 sec.

Without dynamic scaling one would naively predict  $t_p = 100 \times 0.64$  sec = 64 sec.

This prediction is valid only for the same angle  $\alpha$  in the model and the large pendulum.

# Dimensional Analysis Example 1: A Pendulum

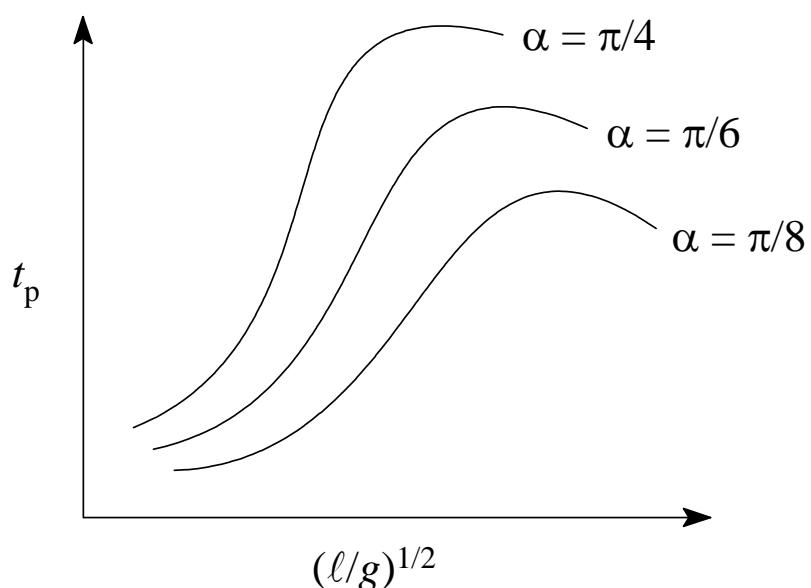


**Table 5.5. The parameters of a pendulum**

| physical quantity          | symbol   | dimensions       |
|----------------------------|----------|------------------|
| period of oscillation      | $t_p$    | T                |
| length of pendulum         | $\ell$   | L                |
| mass of pendulum           | $m$      | M                |
| gravitational acceleration | $g$      | L/T <sup>2</sup> |
| amplitude                  | $\alpha$ | (none)           |

Dimensional analysis yields  $t_p = \left(\frac{\ell}{g}\right)^{1/2} f(\alpha)$

The pendulum period depends on  $\ell$  and  $\alpha$  only.



To find the function  $f$  we must conduct experiments, but our experimental agenda is shortened by dimensional analysis; vary only  $\ell$  and  $\alpha$  .

Experiments show the period is independent of  $\alpha$  .

$$t_p = 2\pi \left(\frac{\ell}{g}\right)^{1/2}$$