
EngrD 2190 – Lecture 28

Concept:  Dimensional Analysis and Dynamic Scaling

Context:  Universal Scaling of a Pendulum

Defining Question: Why do you need not fear gigantic ants 
or gargantuan mosquitos?

Read Chapter 5 pp. 431-436
Dynamics of Walking and Running.
Lecture 29 will follow the textbook.







Dimensional Analysis
and Dynamic Scaling







A ‘Water Bear’ (aka a Tardigrade) - Nature’s Toughest Animal





Fantastic Voyage (1966)



Fantastic Voyage (1966)





Mosquito! (1995)



Them! (1954)



The Deadly Mantis (1957)



The Deadly Mantis (1957)



Starship Troopers (1997)



One Million BC (1940)



The Giant Gila Monster (1959)



The Lost World (1960)











The Shobijin
from Mothra
(1961)

Gulliver and
the Lilliputians









Dynamic Scaling Example 1 - Motion Through a Fluid

Swimmer stops swimming - swimmer glides for 1-3 body lengths



Dynamic Scaling Example 1 - Motion Through a Fluid

Propellers stop - ship glides for ~100 ship lengths



Dynamic Scaling Example 1 - Motion Through a Fluid

Propulsion stops - paramecium glides for ~0 body lengths



Dynamic Scaling Example 1 - Motion Through a Fluid

Key ratio for motion through fluids:
forces frictional

forces inertial

Ratio is negligible for microfluidics



Dynamic Scaling Example 1 - Motion Through a Fluid

Key ratio for motion through fluids:
forces frictional

forces inertial

Ratio is large for commercial chemical processes

Reactor cascade connected by 20” pipes.

Flow is 40 tons/minute

Partial oxidation of cyclohexane to cyclohexanol.
First step in process to synthesize Nylon.



Flixborough England 1974

Explosion killed 28 and caused $450,000,000 in damages.



Dynamic Scaling Example 2 - Distillation Column Scale-Up
McCabe-Thiele analysis: 10 equilibrium stages

bench scale
model

total height:   60 cm

tray diameter:   10 cm

vapor holes in sieve tray:   3 mm

Liquid depth on tray:   2 cm

actual
column (100)

60 m

10 m

30 cm (~14 inches)

2 m (~6½ feet)

The bench-scale model worked well.  The commercial-scale unit failed. Why?

Flow behavior depends on viscosity, density, and surface tension,
which  cannot be scaled.



Dynamic Scaling Example 3 - Chemical Reactor Scale-Up

reaction
rate

1

10

100

1,000

10,000

100,000

temperature

desired reaction

undesired reaction

Why?

CH2=CH2  +  O2

heat

CH2

O
H2C

kJ/mol105(O)CHCH½OCHCH  :reaction desired 22222 

kJ/mol1320OH2CO2O2CHCH  :reaction undesired 22222 

reactor
temperature

bench scale
model

reactor diameter:  1 cm

reactor length:  10 cm

worked
fine

actual
reactor (100)

1 m 

10 m 

blowed
up!

rate energy generated   mass in reactor  reactor volume = L(r2)

rate energy removed   reactor surface area = L(2r)

So how do we scale-up the reactor?



Dynamic Scaling Example 3 - Chemical Reactor Scale-Up

CH2=CH2  +  O2

heat

CH2

O
H2C

So how do we scale-up the reactor?

Many small reactors!



Chemical Process Modeling and Analysis
Mathematical Modeling

process flowsheet   equations

Graphical Modeling
process flowsheet   paths on phase maps
process unit   operating lines

Dimensional Analysis
bench-scale unit   commercial-scale unit scale up
bench-scale unit   micro-scale unit scale down

moderate time interval (minutes)   long time interval (years)

moderate time interval (minutes)   short time interval (msec)

In general: convenient size, duration, or cost   inconvenient or inaccessible

How?  What are the rules?



Dimensional Analysis Example 1: A Pendulum

How does period change with pendulum length?  Mass?  Angle?

100

Dimensional Analysis and Dynamic Scaling!





Dimensions and Units



Dimensional Analysis Example 1: A Pendulum



will always be given

(none)
L
L][

radius
length arc


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Dimensional Analysis Example 1: A Pendulum



We seek an equation of the form ),,,(  gmt p 

has dimensions of time must also have dimensions of time

The function cannot contain m. Why?  Because no other parameter has dimensions of mass.

Can the function contain  ? Yes, because we can cancel ’s dimensions with g.

If  is in the function, it is present as the ratio /g.

Furthermore, the ratio must be present as its square root.
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Dimensional Analysis Example 1: A Pendulum



Dimensional analysis yields

The pendulum period of oscillation scales as the square root of the length.
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For our model pendulum ( = 10 cm) we measure tp  0.64 sec.

For large pendulum (  10 m) we predict tp  100½  0.64 sec  6.4 sec.

Without dynamic scaling one would naively predict tp  100  0.64 sec  64 sec.

This prediction is valid only for the same angle  in the model and the large pendulum.



Dimensional Analysis Example 1: A Pendulum



Dimensional analysis yields )(
1/2
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(/g)1/2

tp
 = /8

 = /6

 = /4

The pendulum period depends on  and  only.  

To find the function  we must conduct
experiments, but our experimental agenda
is shortened by dimensional analysis;
vary only  and  .    
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Experiments show the period is independent of  .


