
EngrD 2190 – Lecture 30

Concept:  Dimensional Analysis and Dynamic Scaling

Context:  Universal Scaling of the Terminal Velocity of a Sphere

Defining Question: What is the most famous dimensionless Group?

Read Chapter 5 pp. 447-454
Dynamic Similarity – How to Design a Model



Homework

 Homework 9 (the last homework) due Friday 11/21.
5.12   deriving Pi groups
5.26 & 5.31  analysis with dimensionless correlations.

Homework is your chief means of assessing your command of the material.

 Homework 8 due today at noon.

Write team code and names of all contributing team members on all solutions.
Indicate this week’s Team Coordinator.

Submit after lecture or deliver to the EngrD 2190 mailbox in a cabinet in the 
hallway outside 116 Olin Hall (ChemE Business Office).  Not to my mailbox.



Homework 7 Excellence – Exercise 4.34 – Team 18

Honorable
Mention to Teams

3, 4, 6, 10, 19, and 23



Homework 7 Excellence – Exercise 4.46 – Team 19

Honorable
Mention to 18(!) Teams

with perfect scores!



Homework 7 Excellence – Exercise 4.101 – Team 25

Honorable
Mention to Teams
11, 15, 16, 18, 19, 

23, and 26.



Homework 7 Excellence – Exercise 4.104 – Team 19

Honorable
Mention to Teams

8, 10, 11, 13, 15, 16, 
23, 24, and 25.



Recap
Motivation:  to predict the behavior/performance of an inconvenient system.

Inconvenient system is too large or too small.
Inconvenient system is too fast or too slow.
Inconvenient system is too hot or too cold.

Plan:  study a convenient model of the inconvenient system.

How to design a dynamically similar convenient model?

Dimensional Analysis and Dynamic Scaling!



Recap of Dimensional Analysis of Pendulums and Walking 

One dimensionless group (of parameters):
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The dimensionless group reveals how parameters scale:
If  is increased 100, tperiod increases by 100½  10.

Must conduct experiments to obtain universal relation:
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Recap of Dimensional Analysis of Pendulums and Walking, cont’d 

Two dimensionless groups:

is called a Dimensionless Group (of Parameters)

aka a Dimensionless Number (The Froude Number)
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‘Number’ is a misnomeraka a  Group
upper case

The magnitude of a dimensionless group describes the phenomenon.

Froude Number < 2.5   bipeds walking or quadrupeds trotting

Froude Number > 2.5   bipeds running or quadrupeds galloping



Dimensional Analysis
and Dynamic Scaling

A Universal Correlation
for the Terminal Velocity of a Sphere



The Terminal Velocity of a Sphere - Applications

Solid-liquid separations
Muddy water - why does sand settle quickly but silt settles slowly?  How slowly?

Solid-vapor separations
Dust settling in air - how long does volcanic ash remain in the atmosphere?

Vapor-liquid systems
How fast do air bubbles rise in a fermenter?

How fast do vapor bubbles rise through the liquid on an equilibrium stage 
in a distillation column?
Liquid droplets in air: mist and fog?  Spray painting?  Virus spreading?

Liquid-liquid systems
Oil-water absorbers and strippers - bouyancy effects?



The Method of Dimensional Analysis

recap from previous lecture:

1.  List parameters will always be given in this course.

2.  Find dimensions of each parameter

3.  Write equation for generic  group

4.  Choose core variables

5.  Derive  groups

6.  Measure Data

7.  Plot universal correlation



Dimensional Analysis of a Falling Sphere

will be given will usually
be given

must derive

dynamics

the sphere

the fluid

physical constant

1.  List parameters
2.  Find dimensions of each parameter



Why the density of the fluid is relevant

Consider running
in a straight line
through a crowded room

you

people

‘density’ = people/area

you

peopleballoons



Dimensional Analysis of a Falling Sphere

3. Write an equation
for generic  group

For  to be dimensionless, each dimension’s exponent must be zero.

(6 parameters)  (3 dimensions) = 3 core variables



Dimensional Analysis of a Falling Sphere

4.  Choose core variables

Two Rules for Core Variables
1. The set of core variables must represent all dimensions.

Not velocity, sphere diameter, and gravity (dimension M is omitted).

2. The core variables must not form a dimensionless group.

Not fluid density and buoyancy.
Not velocity, sphere diameter, and gravity:
v2/(dg) is a Froude Number; [v2/(dg)]  (none)

Easy to check.

Not easy to check.

It is often easier
to derive the  groups.
If a problem arises,
this rule was likely
violated.



Dimensional Analysis of a Falling Sphere

4.  Choose core variables, cont’d

Logical choices for the core variables:
What do we want to predict? velocity

What do we want to vary in our experiments? sphere diameter and fluid viscosity

But we are not the first to study spheres falling through fluids.
Use traditional core variables to relate our results to previous results.

Traditional core variables: buoyancy, gravity, and fluid viscosity.



Dimensional Analysis of a Falling Sphere

5.  Derive  groups

  vadb(sphere  fluid)cd(fluid)egf  

Use the core variables - buoyancy, gravity, and fluid viscosity - to set the exponents.
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Core variables buoyancy, gravity, and fluid viscosity yield key dimensionless groups!



Core variables buoyancy, gravity, and fluid viscosity yield key dimensionless groups!
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The Reynolds Number

Number Reynolds thefluid
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density  volume  mass

 surface area of sphere Shear stress (Newton’s Law of Viscosity)

Re < 1

1 < Re < 1000

Re > 1000

Osborne Reynolds 1883



The Reynolds Number

Number Reynolds thefluid
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Dimensional Analysis of a Falling Sphere

6.  Measure Data 

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Measure v, d, sphere,  and fluid.
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fluid ball dia mass height  time viscosity fluid sphere sph-fl velocity Reynolds Froude Reduced
material (mm) (g) (m) (s) (Pa s) density density density (m/s) Number Number Buoyancy

 (kg/m3)  (kg/m3)  (kg/m3)
glycerin nylon 3.18 0.019 0.05 64.94 1.2 1250 1128 122 0.0007 0.0023 0.000 0.10
glycerin polypropylene 3.18 0.014 0.09 41.76 1.2 1250 831 419 0.0022 0.0073 0.000 0.33
glycerin glass 2.80 0.038 0.11 22.56 1.2 1250 3306 2056 0.0049 0.0142 0.001 1.64
glycerin teflon 3.18 0.038 0.09 20.04 1.2 1250 2257 1007 0.0046 0.0152 0.001 0.81
glycerin steel 3.18 0.133 0.11 3.91 1.2 1250 7899 6649 0.0281 0.093 0.025 5.32
glycerin aluminum 6.35 0.361 0.23 7.91 1.2 1250 2693 1443 0.0291 0.192 0.014 1.15
oil nylon 3.18 0.019 0.64 34.72 0.05 930 1128 198 0.0183 1.08 0.011 0.21
oil steel 1.59 0.016 0.64 5.05 0.05 930 7602 6672 0.1257 3.72 1.015 7.17
oil glass 2.80 0.038 0.51 5.42 0.05 930 3306 2376 0.0937 4.88 0.320 2.55
oil teflon 3.18 0.038 0.64 7.66 0.05 930 2257 1327 0.0829 4.90 0.221 1.43
oil polypropylene 9.53 0.381 0.51 17.63 0.05 930 841 89 0.0288 5.11 0.009 0.10
oil lucite 6.35 0.172 0.51 8.05 0.05 930 1283 353 0.0631 7.45 0.064 0.38
oil aluminum 6.35 0.361 0.51 2.23 0.05 930 2693 1763 0.2278 26.9 0.834 1.90
water nylon 3.18 0.019 0.50 5.53 0.0010 1000 1128 128 0.0904 288 0.262 0.13
water lucite 3.18 0.021 0.50 4.62 0.0010 1000 1247 247 0.1082 344 0.376 0.25
water glass 2.80 0.038 0.51 1.50 0.0010 1000 3306 2306 0.3387 948 4.180 2.31
water steel 1.59 0.016 0.51 0.85 0.0010 1000 7602 6602 0.5976 950 22.923 6.60
water teflon 3.18 0.038 0.51 1.70 0.0010 1000 2257 1257 0.2988 950 2.865 1.26
water polypropylene 6.35 0.113 0.51 3.30 0.0010 1000 843 157 0.1539 978 0.381 0.16



Dimensional Analysis of a Falling Sphere

7.  Plot universal correlation
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How to plot?  A 3-D plot of a level surface?

Difficult to read
quantitative values.

Fr = 100

Re

spherefluid

fluid
Fr = 10

Fr = 1
Fr = 0.1Better to plot as a

family of curves
for values of Fr.

data will lie on a 
level surfacespherefluid

fluid

FrRe



Dimensional Analysis of a Falling Sphere

Divide reduced buoyancy
by Froude number

7.  Plot universal correlation, cont’d



Fluid Flow around a Sphere
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. Re < 1
Laminar Flow
Stokes’s Law

slope = 1

Re > 100
Turbulent Flow



Dynamically Similar Spheres Falling at their Terminal Velocity

inconvenient

Use convenient models to predict results for inconvenient systems.

Extrapolation? No!  All systems are dynamically similar.



Flow Around a Cylinder

Re « 1

Re = 100

Re = 1000Re = 10,000



Flow Past a Plate

Re = 0.1

Re = 10,000



Flow Past an Airfoil

Re = 100

Re = 1000



Flow Past a Block

Re = 0.01

Re = 10

Re = 10,000



Flow Past a House

Re = 0.1 Re = 10

Re = 100 Re = 10,000




