

EngrD 2190 – Lecture 4

Concept: Process Design – Devising Chemical Reaction Cycles

Context: Producing CH₄ from CO₂ and thermal energy.
(exercise 2.30 – solution is posted)

Defining Questions:

Why 2 reaction steps for N₂H₄ synthesis by green chemistry?

Why 9 steps between landings in Olin Hall stairwalls?

Read Chapter 2, pp. 42-48.

Homework 1

Homework 1 due Friday 9/5:

Process Analysis: **2.7.**

Process Design: **2.24 and 2.25(part A only).**

Read process design guidelines on p. 57.

See table of physical data on pp. 86-7.

For 2.24 and 2.25(A), you may assume perfect gas-solid separations; no solids in the gas stream and no gas in the solids stream.

Work in teams. Submit one solution set per team.

Submit *after* lecture or deliver to EngrD 2190 mailbox in a beige cabinet in the hallway across from 111 Olin Hall. ***Not to my mailbox.***

Homework is your chief means of assessing your command of the material.

Do not copy from other sources, such as graded homework and posted solutions from previous years.

Do not use past solutions to check your answers. Process analysis is part of process design. You should be developing methods of assessing your designs.

Homework 1

Homework 1 due Friday 9/5:

Process Analysis: **2.7.**

Process Design: **2.24 and 2.25(part A only).**

For process design exercises 2.24 and 2.25(A) append lists of ‘take-aways.’

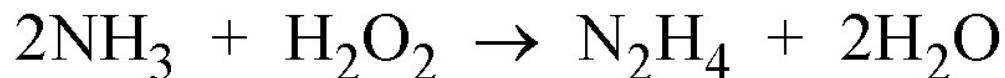
What lessons did you learn from working these exercises?

See lists of ‘take-aways’ appended to the TA powerpoint solutions presented in Calculation Sessions now posted at the EngrD 2190 website.

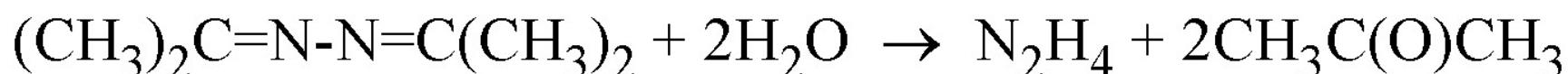
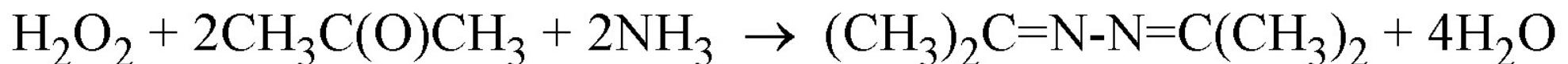
Professional Headshots - THURSDAY

Essential for your Handshake and LinkedIn Profiles.

Thursday, September 4, 5 - 7 p.m. in 128 & 245 Olin.

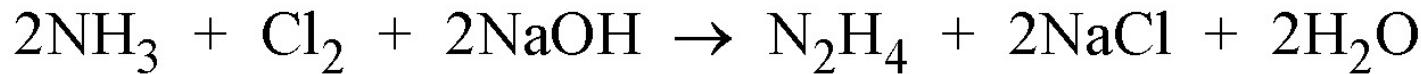

Schedule a sitting on this Google spreadsheet:

https://docs.google.com/spreadsheets/d/1rGtz49yTLEjjKZLiVfsTOh4YFqiArr_yjmFVIwr713Y/edit?usp=sharing

Hydrazine Synthesis (exercise 2.27, lecture 2)

Overall Reaction:



Actual Process - Sequence of 2 Reactions:

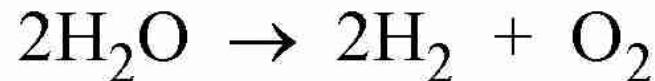
Hydrazine Synthesis (exercise 2.26)

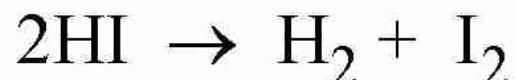
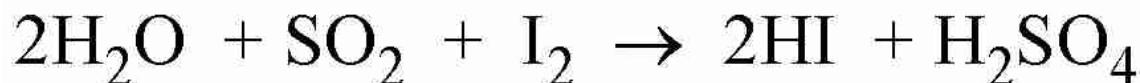
Overall Reaction:

Actual Process - Sequence of 3 Reactions:

NaClO synthesis:

Conversion of acetone to acetazine:


Hydrolysis of acetazine:



Hydrogen from Water and Thermal Energy

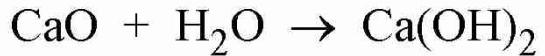
section 2.4.4 of Duncan & Reimer, pp. 36-39

Overall Reaction:

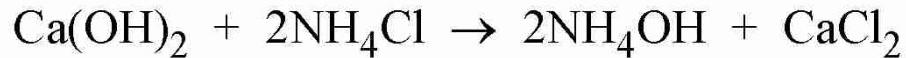
The Sulfur-Iodine cycle:

Soda Ash Synthesis – The Solvay Process (exercise 2.16)

Overall Reaction:

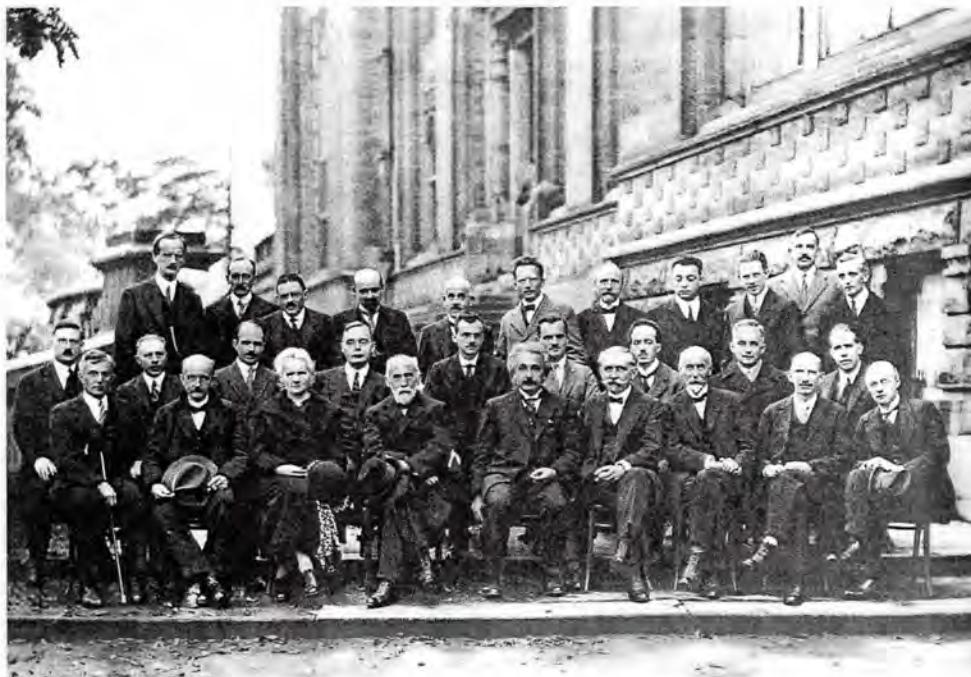


Actual Process - A Sequence of 5 Reactions:


Decomposition (1000°C):

Slaking:

Chlorination:


Carbonation:

Calcination (300°C):

The 1927 Solvay Conference

In October 1927 leading scientists met at the Fifth International Congress on Physics and discussed quantum theory. These participants eventually accounted for 18 Nobel Prizes.

Front Row: Irving Langmuir, Max Planck, Marie Curie, Hendrick Lorentz, Albert Einstein, Paul Langevin, Charles Guye, Charles Wilson, Owen Richardson

Second Row: Peter Debye (Cornell Chemistry, after 1946), Martin Knudsen, William Bragg, Hendrik Kramers, Paul Dirac, Arthur Compton, Louis de Broglie, Max Born, Niels Bohr

Third Row: Auguste Piccard, E. Henriot, Paul Ehrenfest, Edouard Herzen, Théophile de Donder, Erwin Schrödinger, J. E. Verschaffelt, Wolfgang Pauli, Werner Heisenberg, Ralph Fowler, Leon Brillouin.

The conference was hosted by the Solvay Institute in Brussels, Belgium, which continues to provide a forum for the development of fundamental science. The Solvay Institute was founded by Ernest Solvay (1838-1922) who devised the Solvay process for producing soda ash (sodium carbonate, Na_2CO_3), a key reactant in the production of glass and paper. (See Duncan and Reimer, *Chemical Engineering Design and Analysis*, p. 44). However, Solvay made his fortune through a process he developed to produce ammonia. Solvay is generally described as a "scientist, philanthropist and industrialist" although his work would best be categorized as chemical engineering.

The top 25 thermochemical cycles for nuclear energy

NH2

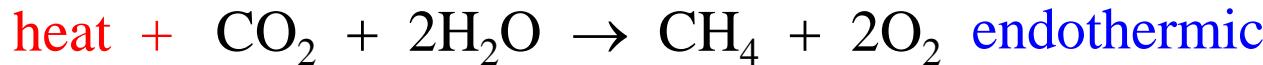
Nuclear Hydrogen

Cycle	Name	T/E*	T °C	Reaction	F†	
1	Westinghouse [12]	T	850	$2\text{H}_2\text{SO}_4(\text{g}) \rightarrow 2\text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) + \text{O}_2(\text{g})$	1/	
		E	77	$\text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{a}) \rightarrow \text{H}_2^{\text{t}}$		
2	Ispra Mark 13 [13]	T	850	$2\text{H}_2\text{SO}_4(\text{g}) \rightarrow 2\text{SO}_2(\text{g}) + 2\text{HBr}(\text{a}) + \text{H}_2(\text{g})$		
		E	77	$\text{Br}_2(\text{l}) + \text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l}) \rightarrow 2\text{HBr}(\text{g}) + \text{H}_2\text{SO}_4(\text{a})$	1	
3	UT-3 Univ. of Tokyo [8]	T	600	$2\text{Br}_2(\text{g}) + 2\text{CaO} \rightarrow 2\text{CaBr}_2 + \text{O}_2(\text{g})$	1/	
		T	600	$3\text{FeBr}_2 + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 6\text{HBr} + \text{H}_2(\text{g})$	1	
		T	750	$\text{CaBr}_2 + \text{H}_2\text{O} \rightarrow \text{CaO} + 2\text{HBr}$	1	
		T	300	$\text{Fe}_3\text{O}_4 + 8\text{HBr} \rightarrow \text{Br}_2 + 3\text{FeBr}_2 + 4\text{H}_2\text{O}$	1	
4	Sulfur-Iodine [14]	T	850	$2\text{H}_2\text{SO}_4(\text{g}) \rightarrow 2\text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) + \text{O}_2(\text{g})$	1/	
		T	450	$2\text{HI} \rightarrow \text{I}_2(\text{g}) + \text{H}_2(\text{g})$	1	
		T	120	$\text{I}_2 + \text{SO}_2(\text{a}) + 2\text{H}_2\text{O} \rightarrow 2\text{HI}(\text{a}) + \text{H}_2\text{SO}_4(\text{a})$	1	
5	Julich Center EOS [15]	T	800	$2\text{Fe}_3\text{O}_4 + 6\text{FeSO}_4 \rightarrow 6\text{Fe}_2\text{O}_3 + 6\text{SO}_2 + \text{O}_2(\text{g})$	1/	
		T	700	$3\text{FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2(\text{g})$	1	
		T	200	$\text{Fe}_2\text{O}_3 + \text{SO}_2 \rightarrow \text{FeO} + \text{FeSO}_4$	6	
6	Tokyo Inst. Tech. Ferrite [16]	T	1000	$2\text{MnFe}_2\text{O}_4 + 3\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \rightarrow 2\text{Na}_3\text{MnFe}_2\text{O}_6 + 3\text{CO}_2(\text{g}) + \text{H}_2(\text{g})$	1	
		T	600	$4\text{Na}_3\text{MnFe}_2\text{O}_6 + 6\text{CO}_2(\text{g}) \rightarrow 4\text{MnFe}_2\text{O}_4 + 6\text{Na}_2\text{CO}_3 + \text{O}_2(\text{g})$	1/	
		T	800	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/	
7	Hallett Air Products 1965 [15]	E	25	$2\text{HCl} \rightarrow \text{Cl}_2(\text{g}) + \text{H}_2(\text{g})$	1	
		T	725	$2\text{K} + 2\text{KOH} \rightarrow 2\text{K}_2\text{O} + \text{H}_2(\text{g})$	1	
		T	825	$2\text{K}_2\text{O} \rightarrow 2\text{K} + \text{K}_2\text{O}_2$	1	
8	Gaz de France [15]	T	125	$2\text{K}_2\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{KOH} + \text{O}_2(\text{g})$	1/	
		T	800	$\text{NiMnFe}_4\text{O}_6 + 2\text{H}_2\text{O} \rightarrow \text{NiMnFe}_4\text{O}_8 + 2\text{H}_2(\text{g})$	1	
		T	800	$\text{NiMnFe}_4\text{O}_8 \rightarrow \text{NiMnFe}_4\text{O}_6 + \text{O}_2(\text{g})$	1/	
10	Aachen Univ Julich 1972 [15]	T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/	
		T	170	$2\text{CrCl}_2 + 2\text{HCl} \rightarrow 2\text{CrCl}_3 + \text{H}_2(\text{g})$	1	
		T	800	$2\text{CrCl}_3 \rightarrow 2\text{CrCl}_2 + \text{Cl}_2(\text{g})$	1	
11	Ispra Mark 1C [13]	T	100	$2\text{CuBr}_2 + \text{Ca}(\text{OH})_2 \rightarrow 2\text{CuO} + 2\text{CaBr}_2 + \text{H}_2\text{O}$	1	
		T	900	$4\text{CuO}(\text{s}) \rightarrow 2\text{Cu}_2\text{O}(\text{s}) + \text{O}_2(\text{g})$	1/	
		T	730	$\text{CaBr}_2 + 2\text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2 + 2\text{HBr}$	2	
12	LASL- U [15]	T	100	$\text{Cu}_2\text{O} + 4\text{HBr} \rightarrow 2\text{CuBr}_2 + \text{H}_2(\text{g}) + \text{H}_2\text{O}$	1	
		T	25	$3\text{CO}_2 + \text{U}_3\text{O}_8 + \text{H}_2\text{O} \rightarrow 3\text{UO}_2\text{CO}_3 + \text{H}_2(\text{g})$	1	
		T	250	$3\text{UO}_2\text{CO}_3 \rightarrow 3\text{CO}_2(\text{g}) + 3\text{UO}_3$	1	
13	Ispra Mark 8 [13]	T	700	$6\text{UO}_3(\text{s}) \rightarrow 2\text{U}_3\text{O}_8(\text{s}) + \text{O}_2(\text{g})$	1/	
		T	700	$3\text{MnCl}_2 + 4\text{H}_2\text{O} \rightarrow \text{Mn}_3\text{O}_4 + 6\text{HCl} + \text{H}_2(\text{g})$	1	
		T	900	$3\text{MnO}_2 \rightarrow \text{Mn}_3\text{O}_4 + \text{O}_2(\text{g})$	1/	
14	Ispra Mark 6 [13]	T	100	$4\text{HCl} + \text{Mn}_3\text{O}_4 \rightarrow 2\text{MnCl}_2(\text{a}) + \text{MnO}_2 + 2\text{H}_2\text{O}$	3/	
		T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/	
		T	170	$2\text{CrCl}_2 + 2\text{HCl} \rightarrow 2\text{CrCl}_3 + \text{H}_2(\text{g})$	1	
		T	700	$2\text{CrCl}_3 + 2\text{FeCl}_2 \rightarrow 2\text{CrCl}_2 + 2\text{FeCl}_3$	1	
		T	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(\text{g}) + 2\text{FeCl}_2$	1	

Exercise 2.20

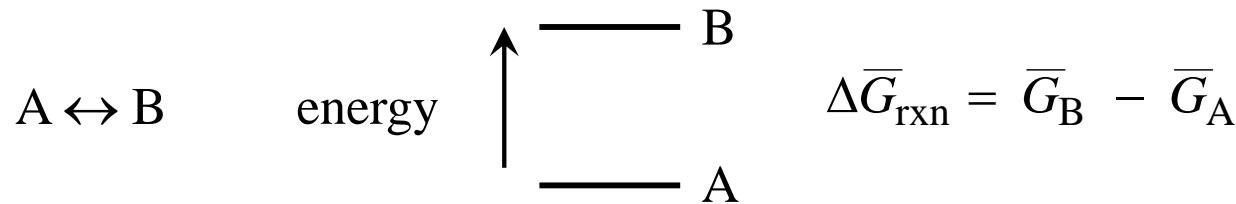
Cycle	Name	T/E*	T °C	Reaction	F†
15	Ispra Mark 4 [13]	T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/
		T	100	$2\text{FeCl}_2 + 2\text{HCl} + \text{S} \rightarrow 2\text{FeCl}_3 + \text{H}_2\text{S}$	1
		T	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(\text{g}) + 2\text{FeCl}_2$	1
		T	800	$\text{H}_2\text{S} \rightarrow \text{S} + \text{H}_2(\text{g})$	1
16	Ispra Mark 3 [13]	T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/
		T	170	$2\text{VOCl}_3 + 2\text{HCl} \rightarrow 2\text{VOCl}_2 + \text{H}_2(\text{g})$	1
		T	200	$2\text{VOCl}_3 \rightarrow \text{Cl}_2(\text{g}) + 2\text{VOCl}_2$	1
17	Ispra Mark 2 (1972) [13]	T	100	$\text{Na}_2\text{O} \cdot \text{MnO}_2 + \text{H}_2\text{O} \rightarrow 2\text{NaOH}(\text{a}) + \text{MnO}_2$	2
		T	437	$4\text{MnO}_2(\text{s}) \rightarrow 2\text{Mn}_2\text{O}_3(\text{s}) + \text{O}_2(\text{g})$	1/
		T	800	$\text{Mn}_2\text{O}_3 + 4\text{NaOH} \rightarrow 2\text{Na}_2\text{O} \cdot \text{MnO}_2 + \text{H}_2(\text{g}) + \text{H}_2\text{O}$	1
18	Ispra CO/Mn3O4 [18]	T	977	$6\text{Mn}_2\text{O}_3 \rightarrow 4\text{Mn}_3\text{O}_4 + \text{O}_2(\text{g})$	1/
		T	700	$\text{CO}(\text{g}) + \text{H}_2\text{O}(\text{g}) \rightarrow \text{CO}(\text{g}) + \text{H}_2(\text{g})$	1
		T	700	$\text{CO}(\text{g}) + 2\text{Mn}_3\text{O}_4 \rightarrow \text{C} + 3\text{Mn}_2\text{O}_3$	1
19	Ispra Mark 7B [13]	T	1000	$2\text{Fe}_2\text{O}_3 + 6\text{Cl}_2(\text{g}) \rightarrow 4\text{FeCl}_3 + 3\text{O}_2(\text{g})$	3/
		T	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(\text{g}) + 2\text{FeCl}_2$	3/2
		T	650	$3\text{FeCl}_2 + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 6\text{HCl} + \text{H}_2(\text{g})$	1
		T	350	$4\text{Fe}_3\text{O}_4 + \text{O}_2(\text{g}) \rightarrow 6\text{Fe}_2\text{O}_3$	1/
		T	400	$4\text{HCl} + \text{O}_2(\text{g}) \rightarrow 2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}$	3/
20	Vanadium Chloride [19]	T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/
		T	25	$2\text{HCl} + 2\text{VCl}_2 \rightarrow 2\text{VCl}_3 + \text{H}_2(\text{g})$	1
		T	700	$2\text{VCl}_3 \rightarrow \text{VCl}_4 + \text{VCl}_2$	2
		T	25	$2\text{VCl}_4 \rightarrow \text{Cl}_2(\text{g}) + 2\text{VCl}_3$	1
21	Mark 7A [13]	T	420	$2\text{FeCl}_3(\text{l}) \rightarrow \text{Cl}_2(\text{g}) + 2\text{FeCl}_2$	3/
		T	650	$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{HCl}(\text{g}) + \text{H}_2(\text{g})$	1
		T	350	$4\text{Fe}_3\text{O}_4 + \text{O}_2(\text{g}) \rightarrow 6\text{Fe}_2\text{O}_3$	1/
		T	1000	$6\text{Cl}_2(\text{g}) + 2\text{Fe}_2\text{O}_3 \rightarrow 4\text{FeCl}_3(\text{g}) + 3\text{O}_2(\text{g})$	1/
		T	120	$\text{Fe}_2\text{O}_3 + 6\text{HCl}(\text{a}) \rightarrow 2\text{FeCl}_3(\text{a}) + 3\text{H}_2\text{O}(\text{l})$	1
22	GA Cycle 23 [20]	T	800	$\text{H}_2\text{S}(\text{g}) \rightarrow \text{S}(\text{g}) + \text{H}_2(\text{g})$	1
		T	850	$2\text{H}_2\text{SO}_4(\text{g}) \rightarrow 2\text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) + \text{O}_2(\text{g})$	1/
		T	700	$3\text{S} + 2\text{H}_2\text{O}(\text{g}) \rightarrow 2\text{H}_2\text{S}(\text{g}) + \text{SO}_2(\text{g})$	1/
		T	25	$3\text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l}) \rightarrow 2\text{H}_2\text{SO}_4(\text{a}) + \text{S}$	1/
		T	25	$\text{S}(\text{g}) + \text{O}_2(\text{g}) \rightarrow \text{SO}_2(\text{g})$	1/
23	US -Chlorine [15]	T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/
		T	200	$2\text{CaCl}_2 + 2\text{HCl} \rightarrow 2\text{CaCl}_2 + \text{H}_2(\text{g})$	1
		T	500	$2\text{CaCl}_2 \rightarrow 2\text{CaCl} + \text{Cl}_2(\text{g})$	1
		T	420	$2\text{FeCl}_3 \rightarrow \text{Cl}_2(\text{g}) + 2\text{FeCl}_2$	3/
		T	150	$3\text{Cl}_2(\text{g}) + 2\text{Fe}_3\text{O}_4 + 12\text{HCl} \rightarrow 6\text{FeCl}_3 + 6\text{H}_2\text{O} + \text{O}_2(\text{g})$	1/2
		T	650	$3\text{FeCl}_2 + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 6\text{HCl} + \text{H}_2(\text{g})$	1
24	Ispra Mark 9 [13]	T	850	$2\text{Cl}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \rightarrow 4\text{HCl}(\text{g}) + \text{O}_2(\text{g})$	1/
		T	170	$2\text{CrCl}_2 + 2\text{HCl} \rightarrow 2\text{CrCl}_3 + \text{H}_2(\text{g})$	1
		T	700	$2\text{CrCl}_3 + 2\text{FeCl}_2 \rightarrow 2\text{CrCl}_2 + 2\text{FeCl}_3$	1
		T	500	$2\text{CuCl}_2 \rightarrow 2\text{CuCl} + \text{Cl}_2(\text{g})$	1
		T	300	$\text{CuCl} + \text{FeCl}_3 \rightarrow \text{CuCl}_2 + \text{FeCl}_2$	1

* T =thermochemical, E = electrochemical


† Multiplier for one mole of H_2O decomposed

Which chemical cycle is the best? Criteria?

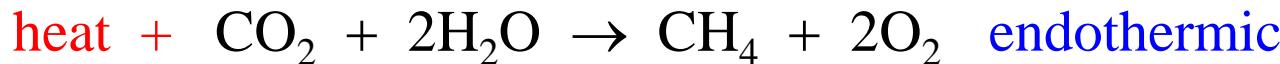
Chp 2


Methane from CO₂ and Thermal Energy

How much heat? Reaction temperature?

Thermodynamics: Given 2 chemical states,
the relative amounts at equilibrium are determined by
the difference in Gibbs energy and the temperature.

deductive,
verbal
statement


inductive,
visual
example

$$\text{at equilibrium: } \frac{\text{amount of B}}{\text{amount of A}} = e^{-\Delta\bar{G}_{\text{rxn}} \textcolor{blue}{RT}}$$

gas constant: $PV = nRT$
 $R = 8.314 \text{ J/(mol°C)}$

eqn 2.4, p.37.

Methane from CO₂ and Thermal Energy

How much heat? $\frac{P_{\text{CH}_4} P_{\text{O}_2}^2}{P_{\text{CO}_2} P_{\text{H}_2\text{O}}^2} \propto e^{-\Delta\bar{G}_{\text{rxn}}/RT}$ like eqn (2.5), p. 37

$$\Delta\bar{G}_{\text{rxn}} = \Delta\bar{H}_{\text{rxn}}^0 - T\Delta\bar{S}_{\text{rxn}}^0 \quad \text{eqn (2.2), p. 37}$$

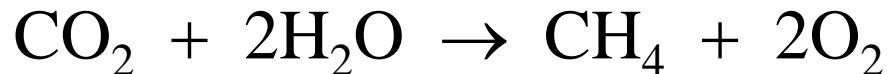
large!

$$\Delta\bar{H}_{\text{rxn}}^0 = +802 \text{ kJ/mol}, \quad \Delta\bar{S}_{\text{rxn}}^0 = +0.0051 \text{ J/(mol}\cdot\text{K)}$$

ΔS_{rxn} is small!
3 gas molecules \rightarrow
3 gas molecules

Like Table 2.11. CO₂ reacted at chemical equilibrium.

T (°C)	T (K)	$\Delta\bar{G}_{\text{rxn}}$ (kJ/mol)	fraction of CO ₂ reacted
25	298	+802	10^{-141}
500	773	+798	10^{-54}
3,000	3,273	+786	10^{-11}
160,000	160,273	-21	0.5


Problem: Devise a reactor that operates at 160,000°C

Concept: Divide a large step into many small steps.

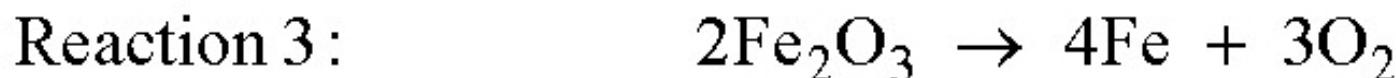
Example: Salmon migration past a large dam.

Methane from CO₂ and Thermal Energy

C and O are reduced.

Need to couple with an oxidation reaction.

What to oxidize?


Metals release energy when oxidized!

Proposal:

Couple the reduction of H₂O with the oxidation of Fe. Also a good reducing agent!

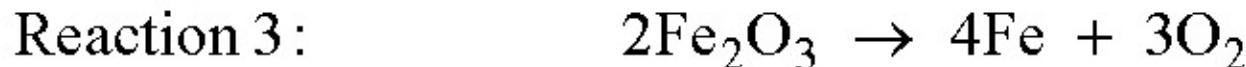
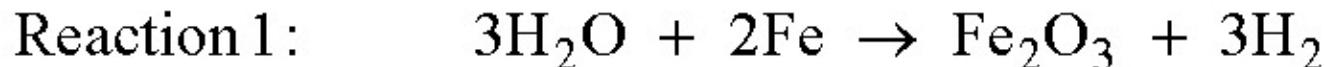
Reaction 1: $3\text{H}_2\text{O} + 2\text{Fe} \rightarrow \text{Fe}_2\text{O}_3 + 3\text{H}_2$

Reaction 2: $\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}$

Do the three reactions form a cycle?

Is the net sum $\text{CO}_2 + 2\text{H}_2\text{O} \rightarrow \text{CH}_4 + 2\text{O}_2$?

Reaction 1: $4/3 \times (3\text{H}_2\text{O} + 2\text{Fe} \rightarrow \cancel{\text{Fe}_2\text{O}_3} + 3\text{H}_2)$



Reaction 2: $\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}$

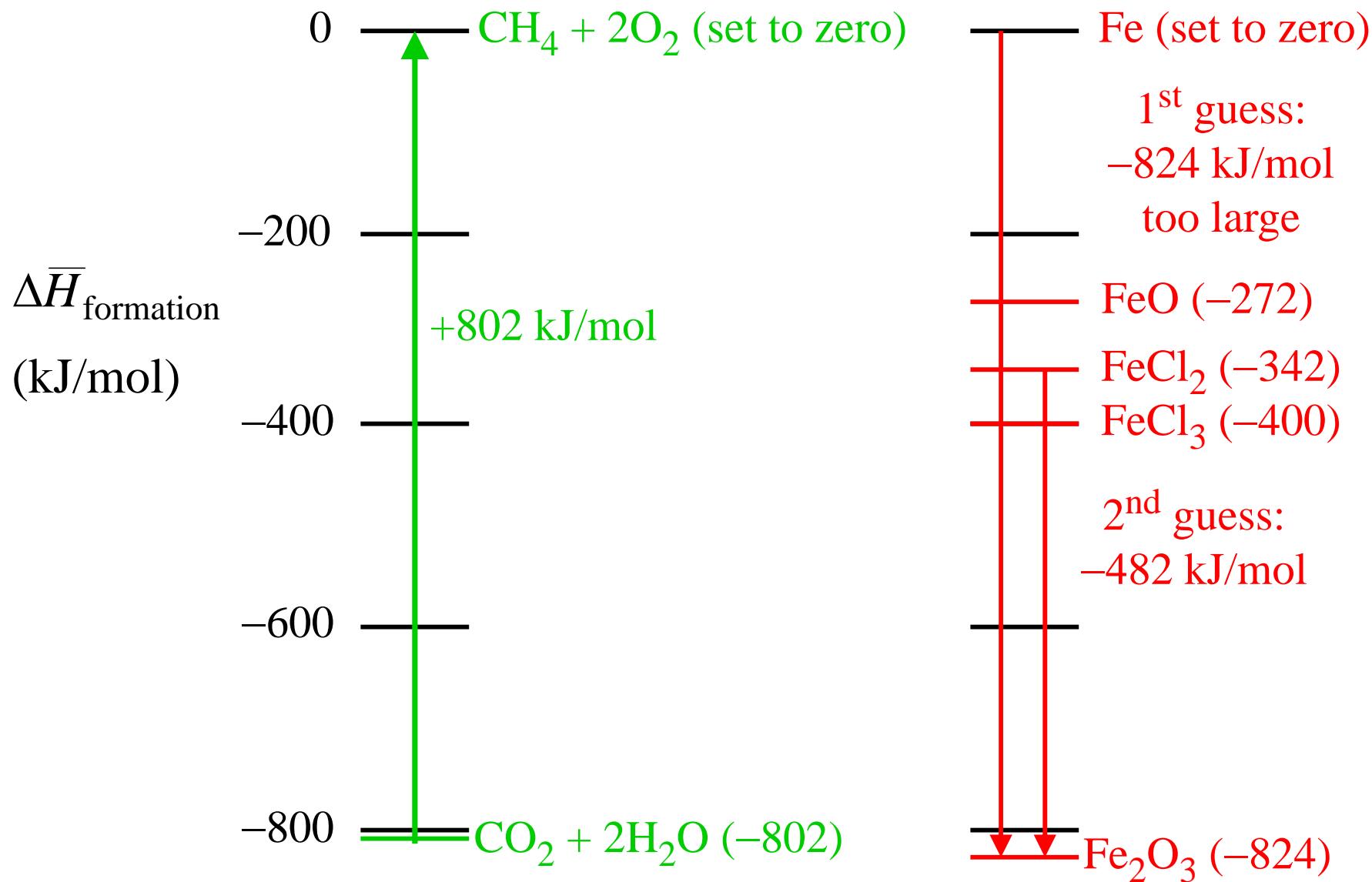
Reaction 3: $2/3 \times (2\cancel{\text{Fe}_2\text{O}_3} \rightarrow 4\text{Fe} + 3\text{O}_2)$

1. Start with reaction 2; it has the correct stoichiometric coefficient for CO_2 .
2. Reaction 2 needs $4\text{H}_2 \Rightarrow$ Reaction 1 must produce 4H_2 .
3. Reaction 1 produces $4/3 \text{ Fe}_2\text{O}_3 \Rightarrow$ Reaction 3 must reduce $4/3 \text{ Fe}_2\text{O}_3$.

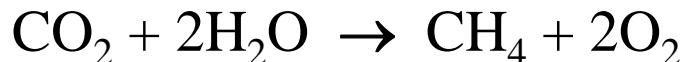
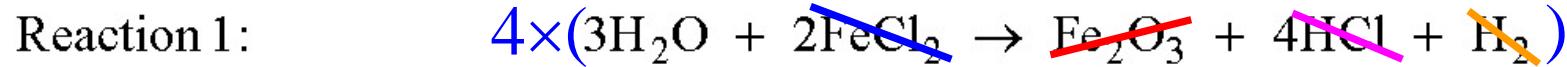
Net sum is $\text{CO}_2 + 2\text{H}_2\text{O} \rightarrow \text{CH}_4 + 2\text{O}_2$!

Are the reactor temperatures practical?

reaction	$\Delta\bar{H}_{\text{rxn}}^0$ kJ/mol	$\Delta\bar{S}_{\text{rxn}}^0$ kJ/(mol·K)	T_{rxn} °C	$\Delta\bar{G}_{\text{rxn}}$ at T_{rxn} kJ/mol	% conversion
1	-99	-0.14	120	-45	99.998
2	-165	-0.17	200	-83	99.999999
3	+824	+0.28	3000	76	94.1



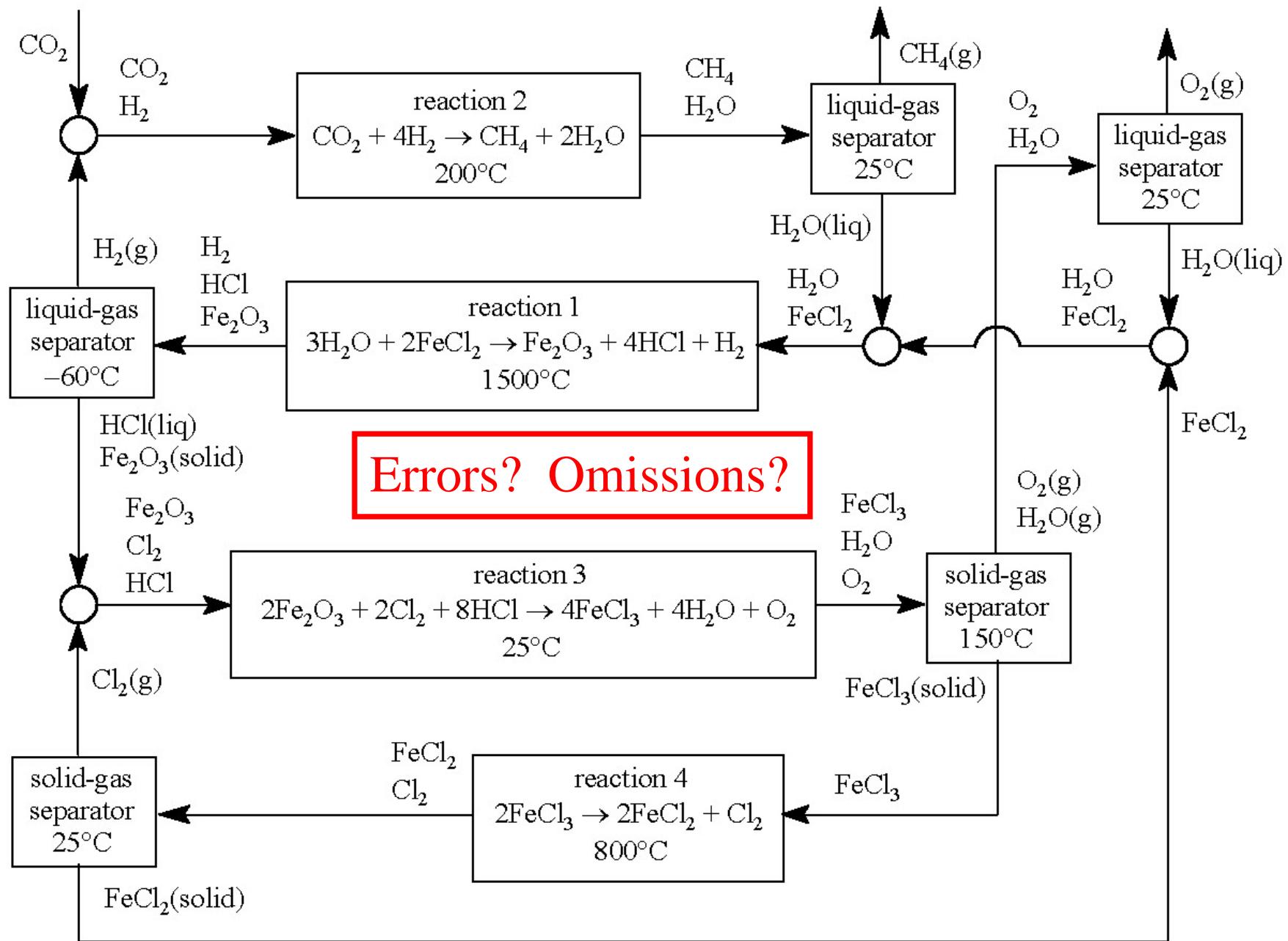
Reaction favored by high temperature.



6%

too low

Need a reducing agent less severe than Fe.

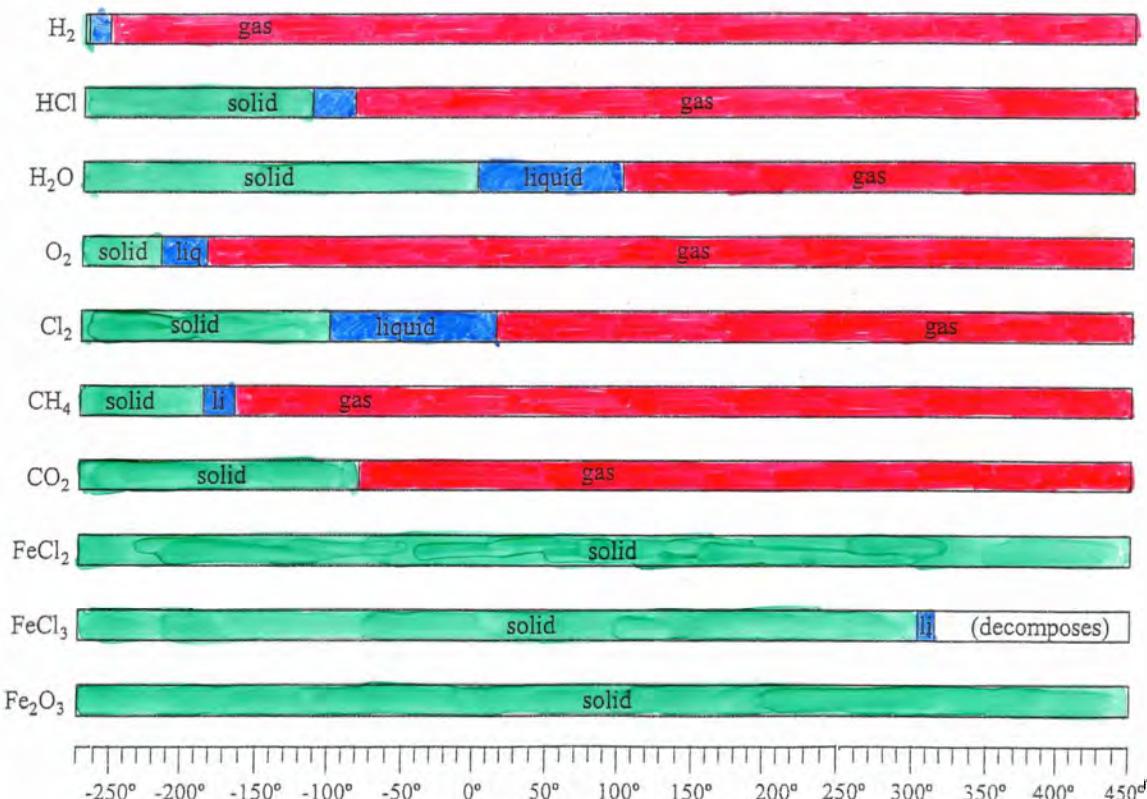
New Proposal: Couple the reduction of H₂O with the oxidation of FeCl₂.



reaction	$\Delta\bar{H}_{\text{rxn}}^0$ kJ/mol	$\Delta\bar{S}_{\text{rxn}}^0$ kJ/(mol·K)	T_{rxn} °C	$\Delta\bar{G}_{\text{rxn}}$ at T_{rxn} kJ/mol	% conversion
1	+216	+0.16	1500	-74	99.3
2	-165	-0.17	200	-83	99.999
3	-354	-1.06	25	-38	99.9999
4	+115	+0.17	800	-72	99.97

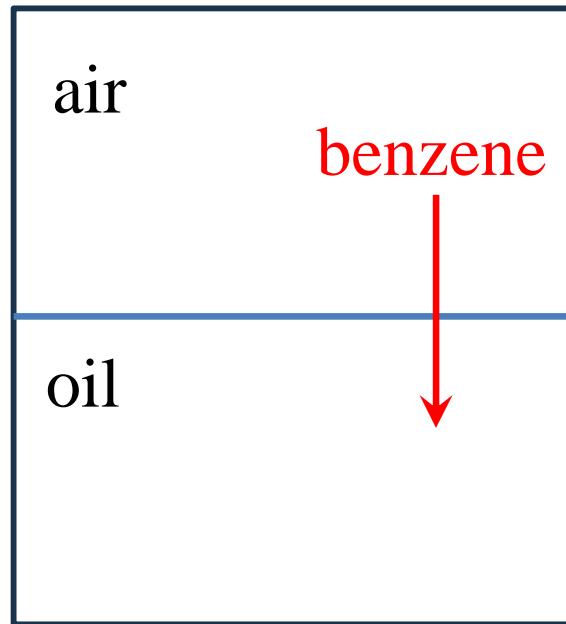
practical
temperatures!

All ~100%
Assume all rxns
go to completion.


Methane from CO_2 and Thermal Energy

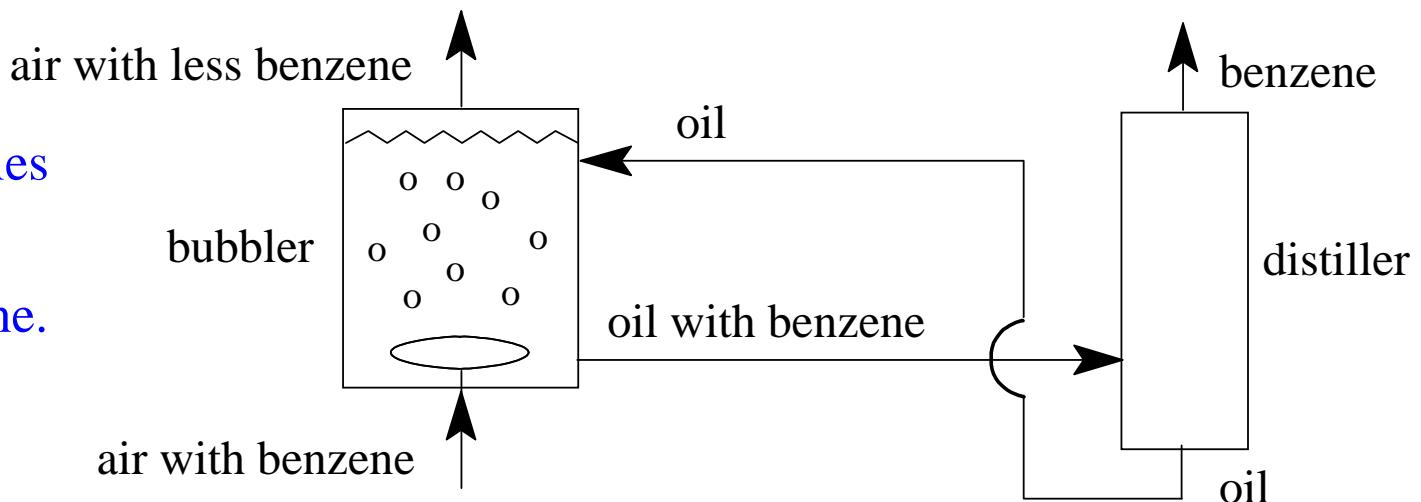
Physical Properties

	melting point (°C)	boiling point at 1 atm (°C)	solubility in water (g/L water at 25°C)
H ₂	-259	-253	0.002
HCl	-114	-85	650
H ₂ O	0	100	∞
O ₂	-218	-183	0.046
Cl ₂	-102	-34	
CH ₄	-182	-164	0.02
CO ₂	-79*	-57**	1.5
FeCl ₂	677	1023	7000
FeCl ₃	306	315***	8000
Fe ₂ O ₃	1566***		insoluble


*sublimation point; solid to gas **at 5 atm ***decomposes

verbal

visual


An Absorber – A Closed Unit

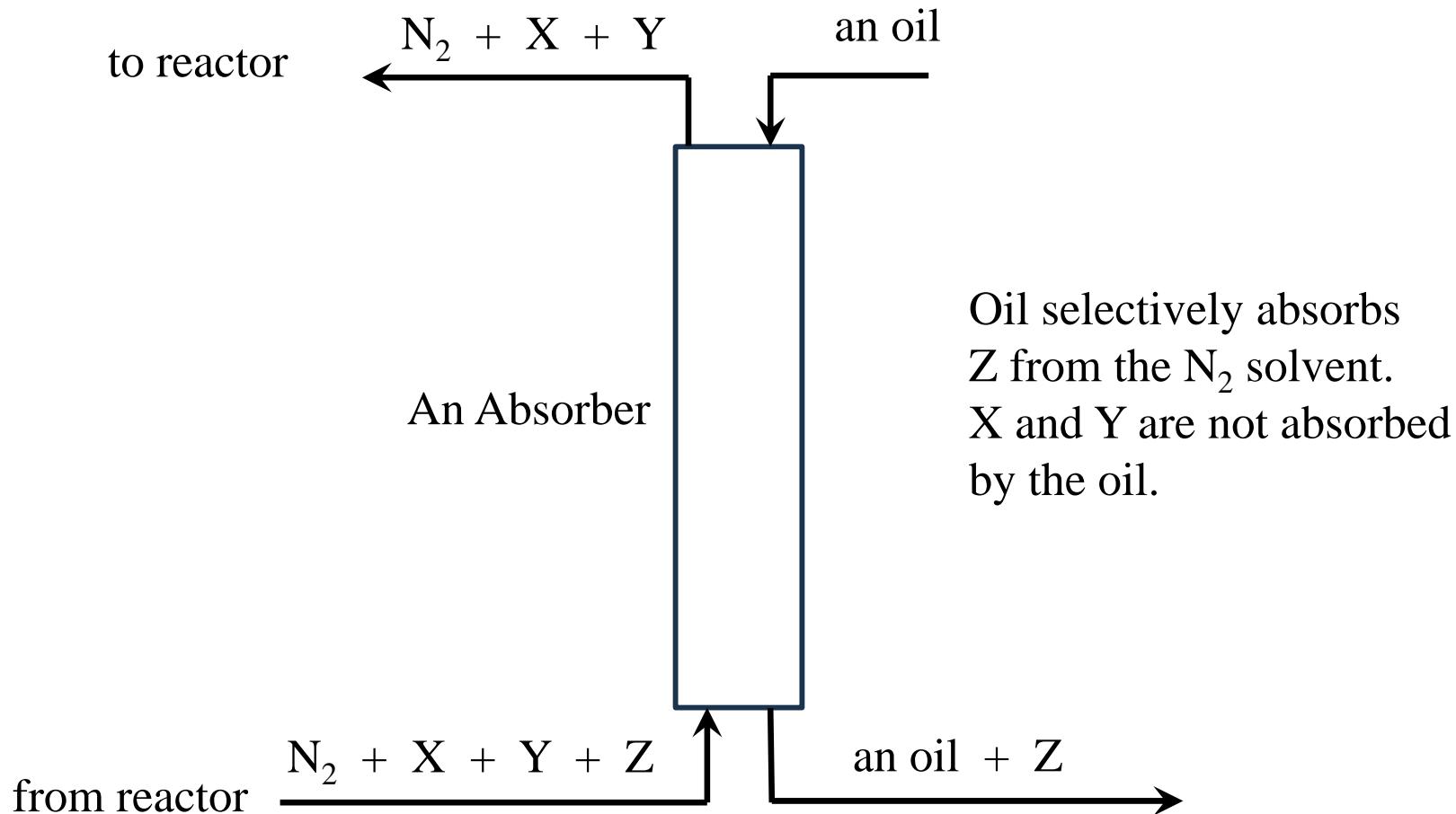
The oil phase
absorbs benzene
from the air phase.

An Absorber – An Open-Flow Unit

As air+benzene bubbles rise through the oil, the oil absorbs benzene.

Countercurrent flow: cleanest oil cleans the cleanest air.

Can design a unit to produce air with negligible benzene.


Selective Absorption for Separations

Reaction is incomplete. Want to recycle reactants X and Y.

X, Y, and Z have similar boiling points.

Z is soluble in an oil. X and Y are not.

