
ChemE 2200    Physical Chemistry II for Engineers 

Solutions to Calculation Session 7 Exercises 

1.(A) True.  This is postulated to be true;  the second law of thermodynamics states that the entropy of an isolated system 

increases for a spontaneous process. 

(B) False.  A closed system is one that does not exchange matter with its surroundings, however, it may exchange heat. If the 

reversible heat is negative, then the entropy of the system will be negative. Consider the reversible, isothermal 

compression of an ideal gas. 

(C)  True.  For example, if the Carnot cycle is run in the opposite direction, the +/ signs on q and w change.  Work is done 

on the system (the engine) and heat is extracted from the cold reservoir.  This is known as a heat pump.  Air conditioners 

and refrigerators are examples of heat pumps. 

(D) False.  The third law of thermodynamics also requires that the substance be a perfect crystal.  If the substance is 

amorphous (like glass compared to quartz) or the crystal contains defects (such as vacancies or dislocations) then there 

are multiple arrangements even at 0 K.  Thus the entropy is not precisely zero at 0 K.  The entropy will be very, very 

close to zero, but not zero. 

(E) True.  No heat will transfer across the piston because T = 0 and the piston will not move because  P = 0. 

(F) False.  Although the two different gases have the same molar entropy, it is possible the two gases have different 

temperatures and pressures.   

(G) False.  Although the He (an ideal gas) in the two different compartments have the same molar entropy, it is possible the 

He gases have different temperatures and pressures.  Consider an adiabatic, reversible path on a P-V map.  (Recall the 

molar entropy is constant for an ideal gas on an adiabatic path.)  For an ideal gas, every point on this path has the same 

molar entropy, yet the points have different molar volumes and pressures.  To guarantee that two He gases have the same 

temperature and pressure, at least two parameters must be equal.  For example, BA SS   and BA VV  .  

(H) True.  U and S are the state functions of the first and second law respectively, which when combined encapsulate the 

whole of thermodynamics.  They tell us if a process will happen, and if so, place constraints on how it will happen.  

(I) False.  The first law tells us that internal energy is a state function; therefore it is independent of path. However, the first 

law does not tell us if a given path is forbidden.  For example, consider a hot and cold block of metal in an isolated 

system in thermal contact (see figure 20.4 McQuarrie &Simon).  Common experience predicts that heat flows from the 

hot block to the cold block.  The first law, however, allows heat to flow from the cold block to the hot block.  The first 

law only requires that qhot = qcold. 

(J) True.  By definition A and G combine both statements of the first and second law.  Look at how A and G are derived.  

Start with some form of the first law, with the appropriate constraints (e.g. constant T), write an equivalent statement of 

the first law using qTdS  , and subtract the first from the second. 

2.(A)  CO2: more atoms and larger mass. 

(B) D2O: larger mass. 

(C) CH3CH2CH2CH2NH2: more flexibility; more configurations possible. 

 Adapted from Problems & Solutions to Accompany McQuarrie - Simon Physical Chemistry: A Molecular Approach, 

Heather Cox (University Science Books, 1997), exercises 21-40 and 21-41. 
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3. Because the molar entropy of a solid or liquid is much smaller than the molar entropy of a gas, we need only consider the 

change in the number of gas molecules for each reaction; Srxn  ngas. 

(A) S(s) + O2(g)  SO2(g) ngas = 1  1 = 0 

(B) H2(g) + O2(g)  H2O2(g) ngas = 1  2 = 1 

(C) CO(g) + 3H2(g)  CH4(g) + H2O )(  ngas = 1  4 = 3 

(D) C(s) + H2O )(   CO(g) + H2(g) ngas = 2  0 =  

(E) C(s) + H2O(g)  CO(g) + H2(g) ngas = 2  1 =  

 The ranking is therefore (D) > (E) > (A) > (B) > (C). 

 Adapted from Problems & Solutions to Accompany McQuarrie - Simon Physical Chemistry: A Molecular Approach, 

Heather Cox (University Science Books, 1997), exercise 21-42. 

4. To calculate the change in entropy – a state function – we need to devise a series of reversible paths between the initial 

and final states.  The first path is reversible isobaric heating from 300 K to 930K.  The second path is isothermal 

compression from 1 atm to 17 atm. 

 Path 1.  Because argon is an ideal monatomic gas, PC  = (5/2)R. 
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 The total entropy change is almost zero.  This is nearly an adiabatic compression. 

 Adapted from J. H. Noggle, Physical Chemistry, 3rd edition, 1996. 

5. We used U to derive an equation in terms of T and V because the natural variables of U are T and V.  T and P are the 

natural variables of H.  Start with the fundamental equation for dH. 

  )1(VdPTdSdH   

 Write the total differential for dH in terms of T and P. 
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 Substitute equation (2) into equation (1) and solve for dS. 
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 Write the total differential for dS in terms of T and P. 
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 The terms preceding dT in both equations (3) and (4) must be equal. 
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 Likewise, the terms preceding dP in both equations (3) and (4) must be equal. 
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 For an ideal gas, H depends on temperature only; (H/P)T = 0.  Also for an ideal gas, V = nRT/P.  Thus equation (6) 

becomes 
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 Substitute equations (5) and (7) into equation (4) and integrate.  Note also for an ideal gas,  (CP/T)P = 0. 
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6. Here are two approaches.  One approach starts with the differential expression for H in terms of S and P. 

  VdPTdSdH   

 At constant P this expression becomes 
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 Another approach is to apply the product rule to the initial expression. 
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 Use the definition of heat capacity and the Useful Relationship from the handout. 
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 From the reciprocal rule for partial derivatives, 
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 Substitute into the product rule expression. 
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 Adapted from J. H. Noggle, Physical Chemistry, 3rd edition, 1996. 

7.(A)  This is a Joule-Thomson expansion of an ideal diatomic gas.  We applied the 1st law of thermodynamics to a Joule-

Thomson expansion in lecture and calculated that the expansion does not cool an ideal gas and the expansion is 

isenthalpic, H = 0.  So there is no enthalpy change between the inlet stream and the outlet stream. 

 Define ncold as the mols of cold output and nhot as the mols of hot output.  Assume a basis of 1 mol total, so  nhot = 1  

ncold.   



 -  4  - 

Calculate the enthalpy change. 

  

))(1()(

)()(

)(

0

outhot incoldout coldincold

outhot inhotout coldincold

outhot hotout coldcoldinhotcold

outhot hotout coldcoldin

HHnHHn

HHnHHn

HnHnHnn

HnHnHH









 

For this example calculation, assume Tcold 4.ºC (269 K) and Thot  25.ºC (298 K). 
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 Thus  nhot = 1  ncold = 0.83 mol.  And ncold/nhot = 0.17/0.83 = 0.20. 

(B) To verify that the 2nd law of thermodynamics is satisfied we must show that S > 0.  The actual process is irreversible.  

To calculate S we must devise a reversible path from the initial condition (1 mol at 4 atm and 293 K) to the final 

conditions: a cold stream (0.17 mol at 1 atm and 269 K) and a hot stream (0.83 mol at 1 atm and 298 K.)  Use two 

reversible processes:  (1) path 12: a reversible isothermal expansion to 1 atm and 293 K and (2) an isobaric cooling - 

path 23 (or heating - path 24) for the two outputs. 
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 Calculate the change in entropy for the cold stream.  

  isobaricisothermal SSS   

 For the isothermal path, use the expression derived in class. 
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 Substitute these expressions into the equation for the total entropy.  Write an expression for the cold stream and use the 

ideal gas law relation V2/V1 = P1/P2 for an isothermal process. 
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 Substitute the pressures and temperatures into the above expression. 
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 The calculation for the hot stream is similar and the result is 
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 Substitute the pressures and temperatures into the above expression. 
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 Calculate the total entropy change.  
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 Because S > 0, the separation into hot and cold streams is spontaneous.  The key to spontaneity is the pressure drop to 1 

atm from 4 atm, which is strongly spontaneous.  
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The Team Competition Champions for Calculation Session 7: 

Team Losers II 

Christina Boehm, Mahika Arora, Liam Chelkowski, 
Noyonima Masud, and Shani Abeyakoon 

 

 
 

Score =91/96 and the 3rd of 20 team submissions! 
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The 2nd Law Table of Truths 

 
 

formula 
isolated    
system 

ideal 
gas 

spontaneous 
process 

reversible 
process 

adiabatic 
process 

isothermal 
process 

isobaric 
process 

isochoric 
process 

TdS  PdV  X  X  X   

S = 0    X X    

S > 0 X  X      

A < 0   X   X  X 
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Notes on some items from the 2nd Law Table of Truths. 

 
TdS  PdV 
 This equation obtains from the fundamental equation dU = TdS  PdV when dU = 0.  The internal energy is 

constant for an isothermal process and an ideal gas.  Note that  dU = TdS  PdV  was derived from the 1st 

law of thermodynamics, dU = q + w, by substituting TdS = qrev.  Thus it is true only when applied to 

reversible processes.  See McQuarrie and Simon, p. 853, eqn (21.1). 

S > 0 
 This is the condition for spontaneity for an isolated system only; q = 0 and w = 0.  For a closed system, one 

may do work on the system and decrease its entropy.  Or one may extract heat from the system and 

decrease its entropy. 

A < 0 
 See McQuarrie and Simon, pp. 881-2, eqn (22.5). 

G < 0 
 See McQuarrie and Simon, pp. 884, eqn (22.12). 

A = wmax 

 See McQuarrie and Simon, pp. 883, eqn (22.9). 

G = wmax non PV 

 See McQuarrie and Simon, pp. 886, eqn (22.16). 
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 This obtains from the useful relation 
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 This is derived from the Maxwell relation, assuming an ideal gas. 
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 so it also requires that T is constant. 
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 This obtains from the useful relation 
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 so it requires that V is constant. 
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 This is derived from the Maxwell relation, assuming an ideal gas. 
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 so it also requires that T is constant. 

Svap = Hvap/T 

 See McQuarrie and Simon, pp. 857, section 21-3. 

 ii yyRS lnmix  

 See McQuarrie and Simon, pp. 836, equation (20.30). 
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 See Slide 6 of Lecture T7. 
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