ChemE 2200 - Physical Chemistry Il for Engineers - Spring 2025
Solution to Homework Assignment 10

1. Devise a progression of steps that includes all the species needed for each reaction. Let M be CO,,.
CH, + CO, » :CH; + -‘H + CO, —» :CH; + -:OH + CO —» CH;OH + CO

Use the thermodynamic data to calculate the energies of the various stages of the reaction.

CH, + CO,: AG = 51 + ~394 = —445 kJ/mol
‘CHy+ "H+ CO,:  AG =148 + 203 + -394 = —43 ki/mol
‘CHy+ "OH+ CO:  AG =148 + 35 + —137 = +46 ki/mol
CH,0H + CO: AG = -162 + —137 = —299 kJ/mol

The activation energy for the first elementary step is obtained from the rate constant.

k = Ae—Ea/RT — 3><10‘7e‘54'5°°”
B _ 54500k
R
E, = 54500 KxR = 54500 Kx8.314— " = 453kJ/mol
(K)(mol)

The first activation barrier peak is 453 kJ/mol above the first level; the first peak is at —445 + 453 = +8 kJ/mol.

For the second elementary step the activation energy for the reverse reaction is

= 4,030 KxR = 4,030 K><8.314; = 34 kJ/mol

Ea
(K)(mol)

The second activation barrier peak is 34 kJ/mol above the third level; the second peak is at +46 + 34 = +80 kJ/mol. In
the forward direction, the second activation barrier peak is 80 — (—43) = 123 kJ/mol.

The activation energy for the third reaction is assumed to be zero.
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To test the theory, we should plot the data so the rate equation is a straight line. If the actual system deviates from the
proposed mechanism and assumptions, deviations from the straight line will be obvious. To obtain an equation of the
form “y = mx + b” invert the rate equation and multiply both sides by [A].

Cd[A] | kl[AP
dt 1+k,[A]

L kAl 1k
KIAP kAP ki[A]

%)
dt

AL (1) ke
(_d[AJj kAl Kk,
dt

We should plot 1/[A] on the x axis and [A]/(—d[A]/dt) on the y axis. The slope is 1/k, and the intercept is k /k,.

A

(A slope = 1/kg
rate

intercept = kp/kg

0

\

0 U[A]

Another expression yields a straight line. Multiply the previous expression by [A].

AL (1) ke
(_d[AJj C ka UAl) ks

dt
AL ey
_dIAT}) ke Kk
&)

In this case, we would plot [A] on the x axis and [A]%/(-d[A]/dt) on the y axis. The slope is k/k, and the intercept is 1/k,.

A

(Alzrate slope = kp/kg

intercept = 1/ky

0

Y

0 [A]
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3. Start with the Arrhenius formula for rate constants and take the logarithm of each side.

E
k = Aexp| ——2
i

Ink=InA+—El
R\T

Thus the activation energy can be calculated from the slope of a plot of In k versus 1/T. Rather than use semi-log graph
paper, we will prepare a table of 1/T and In k and then use standard graph paper.

T (°C) UT (KL k (sec?) Ink
440 1403 x 103 6.9 x 1022 —25.7
450  1.383x 1073 1.6 x 1011 -24.9
460  1.364 x 10°3 3.1x 101 —24.2
470 1.346 x 10°3 7.0 x 1011 -23.4
480  1.328x 1073 161x1010  —226

490 1.311x 1073 2.81 x 10710 -22.0

The data are plotted below.

Ink

0.0013 0.0014
ur

The slope of the fitted line can be calculated from the two points where the line intersects the border: (0.0013, —21.5) and
(0.00141, -26).

= -4.09x10% K

rise —26—(-21.5)
slope = — = ———————
R run 0.00141-0.0013
8.31J
K-mol

Rx4.09x10* K = 4.09%x10* K = 340kJ/mol

m
»
Il

To calculate the preexponential, we calculate the preexponential at each temperature and calculate the average.

T (K) k (sect) A =k exp[E,/RT]
713 6.9 x 1012 5.6 x 1013
723 1.6 x 1011 5.9 x 1013
733 3.1x101 5.3 x 1013
743 7.0 x 1071 5.6 x 1013
753 1.61 x 1010 6.3 x 1013
763 2.81 x 10-10 5.4 x 1013

The average value is A = 6 x 1013 sec”1. Because A is extremely sensitive to the activation energy and the activation
energy is somewhat uncertain, there will be considerable variation in this value.



4. The generic reaction is
k
protein — denatured protein
Assume an Arrhenius behavior for the rate constant: k = A exp(—E,/RT). To reach the same point in the reaction,
the ratio of reaction time is inversely proportional to the ratio of rate constants.

x minutesat 92°C  Kjpoc  Asgoc EXP(-E, / RB73 K))

3minutesat100°C  Kgye Ag,c exp(—E, / R(365 K))

Further assume that the preexponential A is independent of temperature.

x minutesat 92°C  exp(-E, / R(373 K))

3 minutes at 100°C exp(-E, / R(365 K))

oo B 1 L
373K 365K

exp| - 40,000 J / mol 1
8.314J-K mol | 373K 365K

1.33
1.33x3 = 4 minutes

X

Note that the Gibbs energy of the reaction is not needed.

5. Begin with a mass balance on 3 Na ,

d[§INa] _

pm = (rate of creation by neutron absorption) — (rate of decay)

The rate of creation is determined by the neutron flux. In this case the rate is constant;

107 {}Naatoms 1mol %Na (3600 sec] _ 6.0x107* mol {iNa
sec 6.02x10% 2Naatoms \ 1hr hr

The decay of 27 Na is first order,
rate of decay = 2[ 1Na]
For a first-order reaction the half life is (In 2)/k. Calculate k.

In2 _ In2 _ 4.6x107°
ty, 15hr hr

k2:

Derive an integrated rate equation for [ 1Nal.

d[%iNa]

dt = kz[ﬁNa]
ﬂ _ dt
=k 11Na]
J‘[ﬁNa] d[24Na] B J-t ot
0 k,[24Na] 0

Il
-

v

[11Na]:|
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|n{—rn kzr ﬂNa]} = kgt
n

r —k,[%Na] = re™!

kz[ZﬁNa] = rn_rne_k2t

r ;
1iNa] = T (1-e™)
ka
Calculate [37Na ] at t = 30 hrs.

6.0x107* mol %{Na/hr
4.6x107% /hr

4 Na] = (L—g (4810 /M@0y _ 97,1073 mo “Na

Check the result. Att=0,

r
2Na] = “(1-e™% = 0.
kZ
This is correct. There is no radioactive Na when the neutron bombardment starts. Att = o,

v r
“Na] = - (1-e™”) = " — aconstant
Ky ky

After a long time (k,t > 10) the system reaches steady state. The rate of formation equals the rate of decay.
6.(A) Rewrite the first reaction as two forward reactions and add the reactions.
0, +M > 20+ M
200+ M >0, + M
NO+0O —-> 0O, +N

NO+N—>N, +0

sum: 2NO —» N, + O,

(B) Use the second and third reactions to write a rate equation for NO.
d[NO
AR — i, iNoJ[O]- K, INOIIN] ®

We need expressions for the concentrations of the intermediates O and N. Apply the steady-state approximation to N.

% = 0 = ky[NOJ[O] - ks[NOJ[N]
k,[NO][O] = kg[NOJ[N] )

Apply the steady-state approximation to O.

arer _

@ ~°0° 2k; [0, ][M] -2k 4 [O]*[M] ~k,[NO][O] +ks [NO][N] ©)

Eqgn (2) shows that the third and fourth terms in eqn (3) cancel. Solve eqn (3) for [O].



0 = 2ky[0,][M] -2k ;[0]2[M]

k 1/2
[0] = (k—lj [0,1" (4)
-1
Substitute eqn (2) into (1).
A~ i, INOII0] - ,INO[O] = ~2K,INOJ(O) ©)

Substitute eqgn (4) into eqgn (5).

1/2
diNOl _ . (ke e
e Zkz(li [NOJ[O,]

After you work exercise 8 and reflect on exercise 6, you may question if the result of the steady-state approximation on
N - eqn (2) - is a sufficiently good approximation to justify canceling these terms in eqn (3). That is, what if k,[NO][O]
= 1,000,000 and ks[NO][N] = 1,000,001? Although it is a good approximation that k,[NO][O] = k;[NO][N], the
difference between these two terms might be comparable to the difference between the first two terms in egn (3).

The answer is provided by a topic we will cover next week - chain reactions. Reactions 2 and 3 form a cycle. For every
occurrence of reaction 2 there is exactly one occurrence of reaction 3, to maintain the total number of radicals, O and N
atoms, in the cycle. So the approximation in egn (2) is very good; better than the approximation of pre-equilibrium for
reaction 1.

But the result in egn (4) leads to another question - is it valid to assume a steady-state approximation for O? The
approximation is d[O]/dt = 0, but this leads to eqn (4), which shows [O] is proportional to [O,]. O, is a product; it
increases as the reaction proceeds; d[O,]/dt = — %2d[NO]/dt = 0. Use eqn (4) to calculate an expression for d[O]/dt.

12 12
M = d_ ﬁ [O ]1/2 _ ﬁ ld[Oz]
dt dtl k, 2 k,) 2 dt

The key is the ratio k,/k_, is small. The molar Gibbs energy of reaction for O, — 20 is 464 kJ/mol. At a reaction
temperature of 600 K, (k,/k_;)*? is about 10-2°. It is a good approximation that d[O]/dt = 0.
7.(A) Write a rate equation from the second reaction.

dfP] _
e k,[C] @

Apply the pre-equilibrium approximation to the first reaction.

ki[A][B] = k4[C][Q]

o] - MIAIB]
K4[Q]

Substitute the expression for [C] into egn (1).

)

d[P] _ ik, [AILB]

dt k[Q]
(B) Again, begin with the rate equation from the second reaction.
d[P]
—— = k,[C i)
" 2[C] @

Apply the steady-state approximation to C.
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S 0 = walte] - kL1l - klC]
KAl
[€1 = k4[Q] + k, @

Again, substitute the expression for [C] into eqn (1).

d[P] _ kiko[A][B]
dt k4[Q] + k,

8.(A) Start with the differential rate equation for A,

d[A] _
e ki[A]

and then separate and integrate.

[A] drA t
% - —kljdt
[Al 0

Al
[Alo

[A] = [Alge™

In

(B) Write a mass balance on the closed vessel.
mass in the vesselinitially = massin the vessel later
Because initially the reactor contains only A, mg 5 =m¢,=0.
Convert from units of mass to units of molar concentration by dividing each term by the vessel volume and each
molecular weight. Note that A, B and C each have the same molecular weight. We thus arrive at
[Alo = [A] + [B] + [C]

The rate of consumption of A is slow compared to the rate of interconversion between B and C. Using the draining tank
analogy, tank A drains slowly into tank B. Tanks B and C are connected by a large pipe, so they quickly reach
equilibrium. The diagram below assumes that C is thermodynamically lower than B, so there is more C than B at
equilibrium. That is, we assumed k, > k_,.
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We thus assume “post” equilibrium. The rate that B converts to C equals the rate that C converts to B.
ko[B] = k_,[C]

m={qm=&m
)

Substitute the expression for [C] above and the expression for [A] derived in part (A) into the mass balance.
[Alo = [A]l + [B] + [C]
[Aly = [Aloe™ + [B] + K,[B]

[B] = [Alo 17K
2

Some students neglected to assume post-equilibrium and instead solved the full differential equation:

diB]
dt

ki[A] - k;[B] + k,[C]

ki[A] — ko[B] + k_,([Alo —[A]-[B])
(ky —k_)[A] + k[Aly — (ky +k_5)[B]

= (ky —K_)[Alge ™" + k,[Aly — (k, +k_,)[B]

The full solution is

[B] = —(kl —k2) (e’klt _e*(szrkfz)t) + K. (1_e*(kz+k,g)t) [Al

Consider an alternate approximation: If we can assume post-equilibrium, such that k,[B] = k_,[C], then we should be
able to cancel these terms from the rate equation for [B], as such

% = Ki[A] = k;[B] + k,[C] ~ k[A]
[B] = [Al,(L-e™")

This expression for [B] is different from the expression for [B] derived above, yet both used a post-equilibrium
assumption. Which estimate is better? And in general, when can equilibrium assumptions be used to cancel opposing
terms in a differential rate equation?

To explore which estimate is better, we start with the expression for [B] obtained with no assumptions and apply the
facts that k; « k, and k; « k_,, as given in the exercise statement. The exponentials exp(—(k,+ k_,)t) will decrease to zero
much faster than the exponentials exp(—k;t).

kl - k72 ~ — k72
k2 +k_2 _kl ~ k2 +k_2
With these assumptions, the exact expression for [B] simplifies as follows.

[B] — k(k].l:kfz)k (e—kl'[_e—(kz-%—k,z)t) + k k—2k (1_e—(k2+k2)'[)i|[A]0
[ K2 +K 2 =Ky 2tk

ok K,
~ |2 eM_0) + —2(1-0) [A
k2+k,2( ) k2+k,2( ) [[Alo

1_e_klt
1+K,

ke Mk
P -

k, +k_,

[Alo
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We obtain the expression derived by substituting an integrated rate equation for [A] into the mass balance. This is the
better estimate.

So why is it less accurate to use the post-equilibrium approximation to cancel terms in the rate equation for [B]? The key
is that ky[B] ~ k_,[C], or ky[B] — k_5[C] = 0. How small is the difference between k,[B] and k_,[C]? The difference is
approximately equal to the remaining term, k;[A]. For example, consider k,[B] = 1,000,000, k_,[C] = 1,000,001, and
ki[A] = 1. Itisagood approximation that k,[B] ~ k_,[C], but it is not a good approximation that k;[A] + k,[B] — k5[C] =
ki[A]. In this case, the error is a factor of 2.

Or consider another explanation. As above, if we assume post-equilibrium, such that k,[B] = k_,[C], then these terms
cancel from the rate equation for [B], as such

d[B
A8 - Al - k[B] + KC] = kiA)
Recall the differential rate equation for A,
d[A]
— = —k[A
o 1[A]

With the post-equilibrium approximation k,[B] = k_,[C] applied to the rate equation for B, we have the result

d[B] _ d[A]
dt ot

This approximation yields the (incorrect) result that all the A reacts to form B; no C.

In a chemical sense, the slight difference in the dynamic balance of the equilibrium between B and C is approximately
equal to the rate that A converts to B.

So what of the pre-equilibrium approximation, for example, in the series reaction,

ke ky
AZ2B->C
kg

such that k, « k; and k, « k_4? The pre-equilibrium approximation gives us k;[A] = k_4[B]. Is it valid to cancel these
terms in the rate equation for [B], such as
d[B]

= KA - K[B] - K[B] ~ ~k,[B]?

This a reasonable approximation, but not as accurate as first integrating the rate equation for [A], similar to part (A),

SAL _ AT + K41B] = KIATy - K IA]
_ ki gt
(A = Al e

Substitute this expression for [A] into the differential rate equation for [B] and then integrate. So, canceling the terms
ki[A] and k_;[B] would be a reasonable approximation (perhaps within a factor of 10), depending on the relative sizes of
ki, k_q and k.
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