
ChemE 2200  -  Physical Chemistry II for Engineers  -  Spring 2025 

Solution to Homework Assignment 10 

1. Devise a progression of steps that includes all the species needed for each reaction.  Let M be CO2.   

  COOHCHCOOHCHCOHCHCOCH 332324   

Use the thermodynamic data to calculate the energies of the various stages of the reaction. 

  CH4 +  CO2 : G = 51 + 394 = 445 kJ/mol 

  ꞏCH3 +  ꞏH +  CO2 : G = 148 + 203 + 394 = 43 kJ/mol 

  ꞏCH3 +  ꞏOH +  CO : G = 148 + 35 + 137 = +46 kJ/mol 

  CH3OH +  CO : G = 162 + 137 = 299 kJ/mol 

 The activation energy for the first elementary step is obtained from the rate constant. 
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 The first activation barrier peak is 453 kJ/mol above the first level; the first peak is at 445 + 453 = +8 kJ/mol.   

 For the second elementary step the activation energy for the reverse reaction is  
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 The second activation barrier peak is 34 kJ/mol above the third level; the second peak is at 46 + 34 = +80 kJ/mol.  In 

the forward direction, the second activation barrier peak is 80  (43) = 123 kJ/mol. 

The activation energy for the third reaction is assumed to be zero. 
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2. To test the theory, we should plot the data so the rate equation is a straight line.  If the actual system deviates from the 

proposed mechanism and assumptions, deviations from the straight line will be obvious.  To obtain an equation of the 

form “y = mx + b” invert the rate equation and multiply both sides by [A]. 
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 We should plot 1/[A] on the x axis and [A]/(d[A]/dt) on the y axis.  The slope is 1/ka and the intercept is kb/ka. 
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 Another expression yields a straight line.  Multiply the previous expression by [A]. 
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 In this case, we would plot [A] on the x axis and [A]2/(d[A]/dt) on the y axis.  The slope is kb/ka and the intercept is 1/ka. 
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3. Start with the Arrhenius formula for rate constants and take the logarithm of each side. 
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 Thus the activation energy can be calculated from the slope of a plot of ln k versus 1/T.  Rather than use semi-log graph 

paper, we will prepare a table of 1/T and ln k and then use standard graph paper. 

T (C) 1/T (K1) k (sec1) ln k 

440 1.403  103 6.9  1012 25.7 

450 1.383  103 1.6  1011 24.9 

460 1.364  103 3.1  1011 24.2 

470 1.346  103 7.0  1011 23.4 

480 1.328  103 1.61  1010 22.6 

490 1.311  103 2.81  1010 22.0 

 The data are plotted below. 
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 The slope of the fitted line can be calculated from the two points where the line intersects the border: (0.0013, 21.5) and 

(0.00141, 26). 
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 To calculate the preexponential, we calculate the preexponential at each temperature and calculate the average. 

T () k (sec1) A = k exp[Ea/RT] 

713 6.9  1012 5.6  1013 

723 1.6  1011 5.9  1013 

733 3.1  1011 5.3  1013 

743 7.0  1011 5.6  1013 

753 1.61  1010 6.3  1013 

763 2.81  1010 5.4  1013 

The average value is A  6  1013 sec1.  Because A is extremely sensitive to the activation energy and the activation 

energy is somewhat uncertain, there will be considerable variation in this value. 
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4. The generic reaction is 

  protein denaturedprotein
k
  

 Assume an Arrhenius behavior for the rate constant:  k = A exp(Ea/RT).  To reach the same point in the reaction, 

the ratio of reaction time is inversely proportional to the ratio of rate constants. 
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 Further assume that the preexponential A is independent of temperature. 
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 Note that the Gibbs energy of the reaction is not needed. 

 

5. Begin with a mass balance on Na24
11 , 
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 The rate of creation is determined by the neutron flux.  In this case the rate is constant; 
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 The decay of Na24
11  is first order,  

  Na][decay of rate 24
112k  

 For a first-order reaction the half life is (ln 2)/k.  Calculate k2.   
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 Derive an integrated rate equation for [ Na24
11 ].   
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 Calculate [ Na24
11 ] at t = 30 hrs. 
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 Check the result.  At t = 0, 
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 This is correct.  There is no radioactive Na when the neutron bombardment starts.  At t = ,  
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 After a long time (k2t > 10) the system reaches steady state.  The rate of formation equals the rate of decay. 

6.(A)  Rewrite the first reaction as two forward reactions and add the reactions. 
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(B) Use the second and third reactions to write a rate equation for NO. 

  )1(]N][NO[]O][NO[
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 We need expressions for the concentrations of the intermediates O and N.  Apply the steady-state approximation to N. 
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 Apply the steady-state approximation to O. 

  )3(]N][NO[]O][NO[]M[]O[2]M][O[20
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 Eqn (2) shows that the third and fourth terms in eqn (3) cancel.  Solve eqn (3) for [O]. 
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 Substitute eqn (2) into (1). 
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 Substitute eqn (4) into eqn (5). 
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 After you work exercise 8 and reflect on exercise 6, you may question if the result of the steady-state approximation on 

N - eqn (2) - is a sufficiently good approximation to justify canceling these terms in eqn (3).  That is, what if k2[NO][O] 

= 1,000,000 and k3[NO][N] = 1,000,001?  Although it is a good approximation that k2[NO][O] = k3[NO][N], the 

difference between these two terms might be comparable to the difference between the first two terms in eqn (3). 

 The answer is provided by a topic we will cover next week - chain reactions.  Reactions 2 and 3 form a cycle.  For every 

occurrence of reaction 2 there is exactly one occurrence of reaction 3, to maintain the total number of radicals, O and N 

atoms, in the cycle.  So the approximation in eqn (2) is very good; better than the approximation of pre-equilibrium for 

reaction 1. 

 But the result in eqn (4) leads to another question - is it valid to assume a steady-state approximation for O?  The 

approximation is d[O]/dt = 0, but this leads to eqn (4), which shows [O] is proportional to [O2].  O2 is a product; it 

increases as the reaction proceeds; d[O2]/dt =  ½d[NO]/dt  0.  Use eqn (4) to calculate an expression for d[O]/dt. 
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 The key is the ratio k1/k1 is small.  The molar Gibbs energy of reaction for O2  2O is 464 kJ/mol.  At a reaction 

temperature of 600 K, (k1/k1)
1/2 is about 1020.  It is a good approximation that  d[O]/dt = 0. 

7.(A)  Write a rate equation from the second reaction. 

  )1(]C[
]P[

2k
dt

d
  

 Apply the pre-equilibrium approximation to the first reaction. 
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 Substitute the expression for [C] into eqn (1). 
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(B) Again, begin with the rate equation from the second reaction. 
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 Apply the steady-state approximation to C. 
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 Again, substitute the expression for [C] into eqn (1). 
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8.(A)  Start with the differential rate equation for A, 
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 and then separate and integrate. 
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(B) Write a mass balance on the closed vessel. 
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 Because initially the reactor contains only A, mB,0 = mC,0 = 0. 

  CBA0,A mmmm   

 Convert from units of mass to units of molar concentration by dividing each term by the vessel volume and each 

molecular weight.  Note that A, B and C each have the same molecular weight.  We thus arrive at 

 ]C[]B[]A[]A[ 0   

The rate of consumption of A is slow compared to the rate of interconversion between B and C.  Using the draining tank 

analogy, tank A drains slowly into tank B.  Tanks B and C are connected by a large pipe, so they quickly reach 

equilibrium.  The diagram below assumes that C is thermodynamically lower than B, so there is more C than B at 
equilibrium.  That is, we assumed k2 > k2. 
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We thus assume “post” equilibrium.  The rate that B converts to C equals the rate that C converts to B. 
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Substitute the expression for [C] above and the expression for [A] derived in part (A) into the mass balance. 
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Some students neglected to assume post-equilibrium and instead solved the full differential equation: 
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 The full solution is 
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 Consider an alternate approximation: If we can assume post-equilibrium, such that k2[B] = k2[C], then we should be 

able to cancel these terms from the rate equation for [B], as such 

  

)e1(]A[]B[

]A[]C[]B[]A[
]B[

1
0

1221

tk

kkkk
dt

d








 

 This expression for [B] is different from the expression for [B] derived above, yet both used a post-equilibrium 

assumption.  Which estimate is better?  And in general, when can equilibrium assumptions be used to cancel opposing 

terms in a differential rate equation? 

 To explore which estimate is better, we start with the expression for [B] obtained with no assumptions and apply the 

facts that k1 « k2 and k1 « k2, as given in the exercise statement.  The exponentials exp((k2+ k2)t) will decrease to zero 

much faster than the exponentials exp(k1t). 
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 With these assumptions, the exact expression for [B] simplifies as follows. 
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 We obtain the expression derived by substituting an integrated rate equation for [A] into the mass balance.  This is the 

better estimate. 

 So why is it less accurate to use the post-equilibrium approximation to cancel terms in the rate equation for [B]?  The key 

is that k2[B]  k2[C], or k2[B]  k2[C]  0.  How small is the difference between k2[B] and k2[C]?  The difference is 

approximately equal to the remaining term, k1[A].  For example, consider k2[B] = 1,000,000, k2[C] = 1,000,001, and 

k1[A] = 1.  It is a good approximation that k2[B]  k2[C], but it is not a good approximation that k1[A] + k2[B]  k2[C] = 

k1[A].  In this case, the error is a factor of 2. 

 Or consider another explanation.  As above, if we assume post-equilibrium, such that k2[B] = k2[C], then these terms 

cancel from the rate equation for [B], as such 
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 Recall the differential rate equation for A, 
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 With the post-equilibrium approximation k2[B] = k2[C] applied to the rate equation for B, we have the result 
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 This approximation yields the (incorrect) result that all the A reacts to form B; no C. 

 In a chemical sense, the slight difference in the dynamic balance of the equilibrium between B and C is approximately 

equal to the rate that A converts to B. 

 So what of the pre-equilibrium approximation, for example, in the series reaction, 
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 such that k2 « k1 and k2 « k1?  The pre-equilibrium approximation gives us k1[A]  k1[B].  Is it valid to cancel these 

terms in the rate equation for [B], such as 
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 This a reasonable approximation, but not as accurate as first integrating the rate equation for [A], similar to part (A), 
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 Substitute this expression for [A] into the differential rate equation for [B] and then integrate.  So, canceling the terms 

k1[A] and k1[B] would be a reasonable approximation (perhaps within a factor of 10), depending on the relative sizes of 

k1, k1 and k2. 

 

 

 

 
©Copyright Cornell University 2025.  All rights reserved.  Reproduction or retransmission of this document, in whole or in part, in any 

manner, without the written consent of T.M. Duncan, is a violation of copyright law. 


