ChemE 2200 - Physical Chemistry II for Engineers - Spring 2025
Solution to Homework Assignment 13

The fractional reaction order for [Cl,] suggests the mechanism begins with the reversible dissociation of Cl, by a
Lindemann mechanism.

kl
Cl, + M 2 Cl- + Cl- + M rxn 1
ko

Given the possible intermediates, the next reaction is likely the combination of Cl- and CO.

k
Cl- + CO - CICO rxn 2

Reaction of this intermediate with another CI- yields the product.

k
Cl- + CICO - C1,CO

But the hint warns that this reaction has negligible rate and should be ignored. Instead we react Cl, with the intermediate
CICO.

ks

Cl, + CICO — Cl,CO + CI- rxn 3
Derive a rate equation based on elementary reactions 1, 2, and 3. The rate of formation of product is given by reaction 3.

d[Cl1,CO

ALV _ 4 eicoriet, ) ()

dt
Apply the steady-state approximation to obtain an expression for [CICO].
1
% = 0 = k,[CI'][CO]-k;4[CICO][Cl,]
k,[CH[CO] = k3[CICO][CI, ] )

Apply pre-equilibrium to obtain an expression for [Cl-].
k[CLIM] = k[CL*[M]

[Cl = ,f—l[cm”z 3
-1

Substitute eqns (2) and (3) into the rate equation, eqn (1).

d[C1,CO]

—— = KICICOICL,] = k,[CH[CO] = k21/§[012]1/2[001 4
-1

The rate equation has the correct order with respect to CO, but incorrect order with respect to Cl,. We need to increase
the reaction order with respect to Cl,. Previously we assumed steady state on CICO because the rxn 3 involved a radical,
and thus should be fast. But rxn 3 may be slow as rewritten. Assume now that rxn 2 is reversible and is fast with respect
to rxn 3. That is, assume rxn 2 is in equilibrium

ky

Cl- + CO & CIco rxn 2
k_y

The subsequent equation is thus:

k,[CI[CO] = k_,[CICO]

[CICO] = :—2[c1-][c01 )
-2

Substitute eqn (3) into eqn (5).



0 -
[€ICO] = 2 [erico] = -2 [ e, ?(co] (©)
k_y k_y \Vk_;

Substitute eqn (6) into eqn (1).

A0 _ 4 jercoien, ) = k22 e, (coye,)
di koo Yk

d[C1,CO k k
ALEOT 4 & 5 fe, 12100y
dt ko, Kk
In summary, the mechanism of elementary steps is as follows.
ky
Cl, + M & Cl- + Cl- + M inequilibrium
k_y
k2
Cl- + CO & CICO in equilibrium
ko
ks
Cl, + CICO —» Cl,CO + CI- rate - limiting step

Although the following reaction would seem plausible as an alternative first step because it creates the two intermediates,
k

Cl, + CO - CICO + Cl-,

this step is inconsistent with the observed rate equation. Mechanisms with this first step yield rate equations with
integral reaction orders for [Cl,].

The hint stated that this mechanism is not a chain reaction. With the assumptions above, the mechanism is not a chain
reaction. But with different assumptions, the mechanism is a chain reaction; assume the second reaction is irreversible
and the second and third reactions are propagation reactions. The forward first reaction is initiation and the reverse first
reaction is termination. To derive the rate equation, assume the rates of the propagation reactions are equal.

k,[CIF][CO] = k3[Cl,][CICO]

k, [CI][CO]

7
ks [Cly] @

[CICO] =

Substitute eqn (3) into eqn (7)

12
cicoy = X2 [J [CLITICO1 _ &y [y [CO] ®
S AN R VSN

Substitute eqn (8) into the rate equation for C1,CO, eqn (1)
k [k [CO]

d[C1,CO]
—————= = [x[CICO][Cl,] = & _——
dt 3[ ][ 2] 3 k3 k71 [Clz]l/z[ 2]

d[C1,CO] / ky 12
—— = k, [—[CO][C]
7 2 k,l[ 1[C1,]

The rate equation derived with a chain reaction mechanism is inconsistent with the observed rate equation.

Aside: We can use this mechanism to derive a rate equation for the reverse reaction, the decomposition of phosgene,
given in exercise 2 of Calculation Session 5. The rate of decomposition of phosgene is the reverse of the third
elementary step.
d[Cl,CO]
dt
Use the equation for [Cl-] derived in eqn (3).

= k_4[C1,COI[C]]



S

d[C1,CO]

k
- = k_4[C1,CO],|—-[C1,]"* = k[Cl,CO][Cl,]"

Ky

This is the rate equation derived from the rate equation for the formation of phosgene and the equilibrium constant.

2. The rate of emission of visible photons is

d[hv;;sible] ~ kA 0
Apply the steady-state approximation to Az .
d[A}] . .
- 0 = —k,[A,] + k[A, ][A,]
kA1 = K [ATIA,] )

Substitute eqn (2) into eqn (1).
— 7 = KA, 3)
We need an expression for [A;* ]. Apply the steady-state approximation to A;* .

d[A]] - -
=0 = W = BIAYT = KIAYTIA,)

Solve for [A;* ].

o IA T+ KIAYIA, D = 0,

[AT 10k, +k,[AL]) = of

abs

Aok ¢Iabs

[AS] = — 2 (4)
k, +k[A,]
Finally, substitute eqn (4) into eqn (3).

d[hvvisiblc] =k (I)[abs [A _ k3¢[abs[A2]
dt Yhy+k AT Pk +k[A]

For low concentrations of A, the rate of visible photons is proportional to the concentration of A,. For high concentra-
tions of A, the rate of visible photons is independent of the concentration of A,.

3.(A) For stepwise polymerization of an alcohol and an acid to form a polyester, the elementary reaction is
-COOH + HOCH,- —» —-C(O)OCH,- + H,0
and the rate equation is

B % — k[-COOH][-CH,OH]

The amount of acid remaining equals the amount of acid initially, minus the amount of acid that has reacted. The
amount of acid reacted equals the amount of alcohol reacted.

[~COOH] = [-COOH], — [~COOH], ,ccq
= [~COOH], - ([-CH,OH], ~[~CH,OH])

Set [FCOOH], = n[~CH,0H], and define [-CH,0H] = [A].

n[A]y — ([Aly—[AD = (n—-D[A], + [A]

Substitute into the rate equation.

[~COOH]



_% = k((n-D[A], + [A][A]

Check the differential rate equation. For n =1 (equal concentrations of acid and alcohol) the rate equation is
—d[A)/dt = k[A]*. Check.

Separate and integrate.

[A]
dlA] = —kj‘dt
[AJ] (n-D[A], +[A])

Use partial fractions to simplify the left integrand.
1 _ a b
((r—DIAl +[ADIA]  (1-D[AL, +[A] * [A]
Such that a[A] + b((n—1)[A], +[A]) = 1, which yields
1 1
T, M T T,
Substitute the fractions into the left integral.

[ ! Jd[ 1=k J' dt
(n 1)[A]o (n=D[A], +[A] [A]
|

T ~ (Al _
oAy, ln=DiAL +[A) - WAD[Y <
1o (1=DIALy +[A] [Alg = (n=D[A]ykt
Al (n=D[Al, +[Al,

m(wx l) = (n-1)[A] kt

[A] n

S

(n—D[A], +[A] o DIA Lk
n[A]

(n=D[A], + [A]

n[A]e("—l)[A]o ke

(n=D[A]y

[A] = — 0
ne DALk |
(B) Check in the limit £= 0.
(n—1)[A] (n—D[A]y
A = = = A
This is the correct limit. Check in the limit # — oo.
-D[A -D[A
[A] = (n=D[ ]o _)(” )i ]0:()

,,le(n—l)[A]Ok><°O -1 nxoo—1

Again this is the correct limit. Check in the limit n = 1. Because both the numerator and denominator approach zero in
this limit, apply L Hopital’s rule.
A A
lim[A] = lim [Aly _ _[Al
n—l n—l (” DIA +I’l([A] kt)e(n D[A]yk 1+[A]Okl

The limit approaches the integrated rate equation for a second-order reaction, as derived in lecture. This is correct.
Check in the limit » = 1000.
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_ (1000-D[A], _ 999A], ALk
[A] = 1000e100-DIALK _1 = 1900 %Alk [Alpe

The integrated rate equation approaches a first-order decay, as expected for a large excess of the other reactant.

4.(A) Calculate an expression for dk/dT. Assume an Arrhenius expression for the rate constant and assume the pre-expo-

nential is independent of temperature.

k= Ao~Fo/RT
dk d Yo~ B/ RT AE, g /rT
— Ade = 4,

dT  dT RT?

Find the maximum with respect to £,. Take the derivative with respect to £, and set equal to zero.

d (dky A g | AE,( =1\ _g/rr _
—| =] = e e =0
dr

dE, RT? RT*\ RT
0= 1-La
RT
E, = RT
(B) At 1000 K,

_ 8314)
mol-K

8.3 kJ/mol is a low activation barrier. This is why some explosives - such as nitroglycerin and detonators (aka blasting

caps) - must be handled with care. A slight jolt or impact could provide the kinetic energy to initiate an explosion.

RT (1000K) = 8.3kJ/mol

5. Asdiscussed in class, the Michaelis-Menten parameters are most accurately determined from a Hanes plot of [S]/r
versus [S]. Rearrange the Michaelis-Menten equation into the straight-line form for a Hanes plot.

EZK_M+L[S]

r rm ax rm ax

Prepare a table of [S]/r and plot the data. Use least-squares regression to fit a straight line to the data.

[ATP] (10°mol/L)  r (107° mol/L/sec) [ATP]/r (sec)

7.5 0.067 112
12.5 0.095 132
20.0 0.119 168
32.5 0.149 218
62.5 0.185 338
155 0.191 812
320 0.195 1641
2000
~ 1500 T
2
£ 1000 +
%
<
— 500 +
0 1 1 1 1 1 1

0 50 100 150 200 250 300 350
[ATP] (107° mol/L)
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rise 1777 — 62 sec 1 1

slope

run  (350-0)x10° mol/L  2.0x107 mol-L™'sec™  Fimax
Foax = 2.0x1077 mol-L'sec™
KM

rmax

intercept = 62 sec

Ky

(62 seC)rp,, = (62 sec)(2.0x107" mol-L™'sec™) = 1.3x10™° mol-L™
Similar results obtain from a Lineweaver-Burk plot. Rearranging the Michaelis-Menten equation into the following form

provides the straight line on the Lineweaver-Burk plot.

1 Ky 1
4+ oM

rmax rmax [ S ]

1
-

Prepare a table of 1/[S] and 1/r and plot the data. Use least-squares regression to fit a straight line to the data.

[ATP] (105mol/L)  r (10" mol/L/sec) 1/[ATP](10*L/mol) 1/r (107 L sec/mol)

7.5 0.067 13.33 1.49
12.5 0.095 8.00 1.05
20.0 0.119 5.00 0.84
325 0.149 3.08 0.67
62.5 0.185 1.60 0.54

155 0.191 0.65 0.52
320 0.195 0.31 0.51

1/r (10" L sec/mol)

1/[ATP] (10* L/mol)

1 1
Foax = - = = 22x107" mol-L™" sec™
intercept 0.46x107 Lsec-mol™
i 1.53-0.46)x107 Lsec-mol ™ K
slope = LE A ( ) 2 See-mo = 76.4sec = —X
run (14—0)><10 L/mol Fmax
Ky = 76.4secxr,,, = 764 secx2.2x107" mol-L™ sec™ = 1.7x10™° mol-L™

The values for K, and r,,,differ slightly for the Lineweaver-Burk and Hanes methods. A least-squares fit to a Hanes
plot generally yields more accurate Michaelis-Menten constants because the statistical weighting of the data is uniform.
See J. Noggle, Physical Chemistry, 3" ed., pp. 578-80.

©Copyright Cornell University 2025. All rights reserved. Reproduction or retransmission of this document, in whole or in part, in any
manner, without the written consent of T.M. Duncan, is a violation of copyright law.
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6.(A) As with the standard Michaelis-Menten mechanism we assume the third reaction is rate-limiting.
dpP] _

i lES] O

We need to express [E-S] in terms of [S], [I], and [E],. If we assume the inhibition reaction is at equilibrium we obtain,

ki _ [IE-S]

ki [IE-S] @
[[-E-S] = K,[I][E-S], suchthat K, =:—i 3)
i
Because this is a Michaelis-Menten mechanism, we apply the steady-state approximation to the intermediate E-S.
% =0 = k[E][S] — k_[E-S] — K,[II[E-S] + k_;[1-E-S] — k,[E-S]

The equilibrium of the inhibition reaction causes the 3™ and 4" terms on the right to cancel. We thus obtain,
0 = K [E][S] — k[E-S] = ky[E-S]

Solve for [E-S].
. = —kl
[E-S] = ot [E][S] (4)
Substitute eqn (4) into eqn (1).
diP] _ _kks
ik [E][S] (5)

We must express [E] in terms of [E],. Write a mass balance on E.

[E]l, = [E] + [E-S] + [[-E-S]
Use eqn (3) substitute for [I-E-S].
[E], = [E] + [E-S] + K [I][E-S]
= [E] + [E-S]J(A+ K [1])

Use eqn (4) to substitute for [E-S] and solve for [E].

k[ET[S
[E], = [E] + %(HK,»[ID
1 t+hky
E
[E] = kl[ o (©)
L S0

Substitute eqn (6) into eqn (5).
diP] _  kik, [Elo
dt k_ +k, n

: [S]
=L [S](1+ K, [T])
1tk
d[P] _ kik,[E],[S]
dt k_y +ky +k [SJ(1+ K [1])

This is a valid answer. However, it can be simplified further by substituting the Michaelis-Menten constant Ky,

B k_y +k,
K, = —kl
dP] _ k,[E],[S] _ k,[E]y[S]
dt k_1k+k2 + [SI01+K,[1]) K, + [SI0+K,[1])
1

(B) In the limit of no inhibitor, [I] = 0, the rate equation becomes



©

dP] _ k,[E]o[S] _ ky[EL[S]
dt Ky + [SI1+K,x0) K, + [S]

which is the standard rate equation for a Michaelis-Menten reaction. In the limit of inhibition equilibrium shifted strongly
toward I-E-S, K; -,
dP] _ ky[E]o[S] _ ky[E]o[S]
dt Ky + [S](1+o00x[I]) 0

The rate is zero, which would occur if the E-S complexes were completely inhibited from reacting.

Write the rate equation in terms of rate » and maximum rate r,,,.
dP] _  k[E],[S]
dt K+ [SIA+K;[1])
Fmax [S]

Ky + [S)(A+K;[T])

Invert the equation and factor in terms of 1/r and 1/[S].
1 _ Ky + [SIA+KD _ Ky 1 14K
[S] 7o [S] r

max max

r rmax

With uncompetitive inhibition, the slope of the Lineweaver-Burk plot is independent of [I]. The presence of an
uncompetitive inhibitor is revealed by a change in the intercept. For an uncompetitive inhibitor with [I] =0 (no
inhibitor), the intercept is 1/r,,,,. For [I] = 1/K;, the intercept is 2/r,,. For [I] =2/K,, the intercept is 3/rpy. A
qualitative Lineweaver-Burk plot is shown below.

1/r
3/ max - slope = Kyy/rmax
for all lines
2/Fmax
1/7max -
0
0 1/[S]

For a Hanes plot, start with the equation from the Lineweaver-Burk plot and multiply by [S].

81 _ Ky, 14Kl

r T

max h

max
With uncompetitive inhibition, the intercept of the Hanes plot is independent of [I]. The presence of a uncompetitive

inhibitor is revealed by a change in the slope. For an uncompetitive inhibitor with [I] =0 (no inhibitor), the slope is
1/rpax. For [1] = 1/K;, the slope is 2/r,,. For [1] =2/K;, the slope is 3/r,c. A qualitative Hanes plot is shown below.

slope = 3/rmax

slope = 2/ryax

slope = 1/rpax

0 [S]



7.(A) Write a rate equation for X.
-—— = k[E][X] @

We need to find the time dependence of [E] before we can separate and integrate eqn (1). Write a rate equation for [E].

d[E
% = —k[E][X] + ky[E-X] = 2k5[E]* + ky[E-E] (2
Apply the steady-state approximation to E-E and E-X.
d[E-X
AR 0 < KIEIX - KlE-X) G)
AT 0 = KEP - ky[B-E] @
dt
Add eqns (3) and (4) to eqn (2)
d[E
% = _k3[E]2
Separate and integrate.
d[E]
= —kydt
EP
TAE
[E]
_ = —kst
[E] [Elo
1,
[E]  [Elo
oL k[l
[E] [El, [Ely
__[Elp
[E) = 1+ k3[E]yt ©)

Substitute eqn (5) into eqn (1), then separate and integrate.
dIX] _ k[EL[X]
t

dt  1+ks[E],

d[X] _ _—klElo

[X]  1+k;[E]ot

Tax1 kel
I —J' dt

A, X g Tk [El
[X] —k[E] t
ln[X]|[X]o = ﬁln(deE]ot)o
X —k
1n% = k—;[ln(l+k3[E]0t)—1n(l)]
m X i1n(1+k3[E]0t) (6)

[X]o ks
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Solve for [X].
X1 exp _—klln(l+k3[E]0t) = exp[ln(l+k3[E]Ot)_k‘/k3 = (1+ky[E]yr) "'k
[Xo ks
[X] = [X]o(1+ks[E]yn) ™" (7)

The most common error on this exercise is an improper mol balance on E. Note that [E], # [E] + [EX] + [EE]. The
amount of enzyme is not constant. Rather, a proper mol balance on the enzyme is [E], = [E] + [EX] + [EE] + A([Y] +

[Z]) = [E]+[Y].

(B) Atz=0,
[X] = [X],) ™" = [X], okay
Ast— o,
[X] = [X]p() ™" =0 okay

(C) To evaluate the limit &, = 0, use eqn (6) above.

mX _—klln(1+k3[E]0t) = _—klln(l) = —k19
[X1o ks 0 0
which is indeterminate. Apply L'Hopital's rule.
E]y¢
. 04k [E)y 1) l[k][(;i]t
- +
lim —X In(1+k5[Elgt) = —k; lim —2 = —ky lim —2"—%" = —k[E]y¢
k31£>n0 ks n(l+k5[Elo ) 1k3H—>no ik 11c3H—>no 1 1LElo
dky >
Thus
X
1nu = —k[E]yt
[(X]o
[X] = [X]pe !
The system behaves as if the enzyme does not degrade, as expected.
To evaluate the limit k; — oo , again start with equation (6).
In [X] = lim _—klln(1+k3[E]0t) = _—klln(oo) = —kl2
[X1o koo ky 0 0
which is indeterminate. Again apply L'Hopital's rule.
lim _—klln(l+k3[E]Ot) = —k lim Bt —k [El? _
ky—>0 k3 k3 =0 1+k3[E]0t 1+
Thus
In [X] =0
[X]o
[X] = [Xlo

Because the enzyme disappears instantaneously, [X] remains at its initial value, as expected.
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