
ChemE 220 - Physical Chemistry II for Engineers – Spring 2025 

Solution to Homework Assignment 4 

1. The atomic radii of C, Si, and Ge decrease as Ge > Si > C.  Thus a Ge-Ge interatomic distance is longer than Si-Si, 

which in turn is longer than C-C.  Thus the number density of electrons is C > Si > Ge.  Therefore a chunk of 

crystalline carbon (diamond) has the most atoms in a unit volume, and the most valence electrons in a unit volume.  

Given the same number of valence electrons on Ge, Si and C, the following equation, 
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 says the Fermi energy is inversely proportional to the length squared, so the trend is EF(C) > EF(Si) > EF(Ge). 

2.(A) The free electron model applied to a raft of aluminum atoms is equivalent to particles in a two-dimensional box.  Set 

V = 0 inside the box, so Etotal = EKE and thus 
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 Consequently a plot of Etotal as a function of k is a paraboloid, as shown in figure 10.53 (p. 834) of Thomas and Finney, 

Calculus 9th edition.  A cross section is a parabola, like figure 8 of the Electrons in Solids handout.  For electrons to have 

a net flow, we need k  0.  To determine if an applied electric field will shift the state occupancy and cause k  0, we 

need to calculate two quantities: 

  •  the energy spacing at the Fermi level, and 

  •  the probability of having “conduction” electrons at 300 K. 

 The Al raft has 100 Al atoms and each Al contributes 3 valence electrons.  Thus there are 300 electrons in the 

delocalized bond.  We can use the two-dimensional analysis on pp. 2-3 of the Electrons in Solids handout.   

 We need to know the radius of a quarter-circle that contains 150 coordinates.  Each coordinate is a (nx, ny) pair, which 

corresponds to a state.  Each state can hold two electrons.  Solve for the radius of the circle. 
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 Thus the radius of the circle is about 14.  A typical coordinate near the outer edge would be )2/14,2/14( = (10,10).  

Thus the state (nx =10, ny =10) is at the Fermi level.  Compute the energy splitting from an occupied state at (10, 10) to 

an unoccupied state at (11, 10).  The “box” length is 10  2.5 Å = 25 Å.   
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 At 300 K, kT = 0.025 eV.  The Boltzmann population of conduction electrons (electrons with n = 11) is proportional to 

e1.3/0.025 = 2  1023.  There are no conduction electrons. 

 Thus, a 10  10 raft of aluminum atoms is a semiconductor (or insulator). 
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(B) A 10,000  10,000 raft of aluminum atoms contains 108 aluminum atoms and thus 3  108 valence electrons.  Using the 

same method as in part (a), the state (nx =10,000, ny =10,000) is at the Fermi level.  The “box” length is 10,000  2.5 Å.  

Calculate the spacing between energy levels at the Fermi level. 
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 Thus the Boltzmann population above the Fermi level is proportional to e0.0013/0.025 = 0.95. 

 Thus, a 10,000  10,000 raft of aluminum atoms is a metal. 

(C) Band theory will yield a generic plot of E versus k similar to figure 15 of Electrons in Solids.  There are three electrons 

per potential well, so the Fermi level is halfway to the second band gap.  Thus the calculation in part (B) applies and the 

molecule is a metal. 

3. The free electron model applied to polyacetylene is equivalent to particles in a one-dimensional box.  Set V = 0 inside the 

box, so Etotal = EKE and thus 
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 Consequently a plot of Etotal as a function of k is a parabola, as in figure 8 of the Electrons in Solids handout.  For 

electrons to have a net flow, we need k  0.  To determine if an applied electric field will shift the state occupancy and 

cause k  0, we need to calculate 2 quantities: 

  •  the energy spacing at the Fermi level, and 

  •  the probability of having “conduction” electrons at 300 K. 

(A) For x = 10, there are 20 carbon atoms and thus 20 electrons in the delocalized bond.  Thus n = 10 at the Fermi level.  The 

“box” length is 20  1.45Å, assuming the box ends midway along a CCH3 bond.   
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 At 300 K, kT = 0.025 eV.  The Boltzmann population of conduction electrons (electrons with n = 11) is proportional to 

e0.9/0.025 = 2  1016. 

 Thus, for n = 10, the molecule is a semiconductor (or insulator). 

(B) For x = 10,000, there are 20,000 carbon atoms and thus 20,000 electrons in the delocalized bond.  Thus n = 10,000 at the 

Fermi level.  The “box” length is 20,000  1.45Å, assuming the box ends midway along a CCH3 bond.   
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 Calculate the spacing between energy levels at the Fermi level. 
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 Thus the Boltzmann population above the Fermi level is proportional to e0.0009/0.025 = 0.96. 

 Thus, for n = 10,000, the molecule is a metal. 

(C) Band theory will yield a generic plot of E versus k similar to figure 15 of Electrons in Solids.  There is one electron per 

potential well, so the Fermi level is halfway to the first band gap.  Thus the calculation in part (B) applies and the 

molecule is a metal. 

(D) This molecule has two electrons per potential well and thus the Fermi level lies in the first band gap.  Energy levels 

below the gap are filled and energy levels above the gap are empty.  This molecule is a semiconductor, or an insulator. 

4. Silicon has four valence electrons.   Thus the first two bands are filled and the states above the band gap are empty.  The 

occupancy of states for silicon are shown in the figure below. 
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 Boron has three valance electrons.  Every silicon atom replaced by a boron atom creates a vacancy in the valence band 

below the band gap.  Boron-doped silicon is a metallic conductor, as shown in the figure below.   

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9
electron energy, in eV

de
ns

it
y 

of
 s

ta
te

s,
 Z

(E
)/

(1
021

 e
V

)

filled
states

filled
states

empty
states

E gap

B-doped Si

 

 



 -  4  - 
Phosphorus has five valance electrons.  Phosphorus-doped silicon has electrons in the conduction band and thus is also a 

metallic conductor, as shown in the figure below. 
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 Electrons flow through the P-doped Si by traveling in the conduction band.  These electrons have energies above the 

band gap.  When one of these electrons flows into the B-doped Si, the electron still has energy above the band gap.  But 

B-doped Si has vacancies in the valence band.  The electron falls to a state below the band gap.  Thus the photon energy 

is 7.1  6.0 = 1.1 eV. 

 Optional problem - how to make a solid-state laser? 

 One might consider making a solid state laser by placing two mirrors around the B-doped Si, as shown below. 

partially reflective mirror
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 Photons reflect back and forth between the mirrors, stimulating transitions of exactly the same energy.  A portion of the 

coherent photons pass through the partially reflective mirror and create a coherent beam.  In practice, solid state lasers 

are a bit more tricky than this simple device. 
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