ChemE 2200 - Physical Chemistry Il for Engineers — Spring 2025
Solution to Homework Assignment 6

1.(A) For a process at constant pressure, AH = q. Start with the definition of 6P .
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Substitute values for g, n, and T,. Note that g/n = 85.0/6.16 = 13.80 kJ/mol.
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13.80 = 44.28(T, ~298) + “ o0t (17 ~208%) -0 (17 _p0g%) +1.68x106(%_%J
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It is not possible to solve for T,. Solve by whatever means you prefer. For example, try different values of T, until the
equation yields 13.80.

guess g/n
400 5.079531
500 11.14633
550 14.47941
525 12.79046
530 13.12474
540 13.79861
The final temperature is 540 K.

(B) For this estimate, assume ethylene is an ideal gas at 1 atm and 300 to 600 K. Thus we use the relation (_IP = 5\, +R.

_ 6
Cy = Cp-R = {44.28+0.0601T —1.11><10_5T2—1'6i+10 -8.314
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For a process at constant volume, AU = . Start with the definition of C_:V :

(ﬂj - nCy
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13.80 = 35.97 (T2—298)+0-02601(T22_2982)_%(1-23_2983)+1l68xlos( Ti B % j
2

Again it is not possible to solve for T,. Again | try different values of T,.



guess g/n
500 9.467711
600 15.47351
550 12.38529
570 13.60101
580 14.21877
573 13.78565
573.2  13.79799
The final temperature is 573 K.

(C) Heating at constant pressure has a lower final temperature because the volume increases and thus the gas does PV work
on its surroundings. Some of the heat delivered to the gas is used to do this PV work and thus there is less heat available
to increase the temperature.

2.(A) PathF: P, V,, T, toP,, V,, T.. Because the volume is constant, w. = 0 and thus

8C]rev,F = dU = CudT
T5
Urev,r = CVdT
Tl

To calculate AS for path F, start with the first equation above and divide by T.

Sqrev _ du du = CV dT
T T T

_ [ e _ [Cv
AS; _J' T In T

(B) Path G: P,, V,, T; to P,, V,, T,. From the 1% law we have
8y = dU —dwy, = C\dT +PdV

T v,
Qv = j 'CydT +L PdV
TS 1
Because the pressure is constant along Path G, we have
Tl VZ Tl
Gevo = | 'CudT+R[7av = [*CydT+P,(v, V)
5 1 5
To calculate AS for path G, start with the equation for 5q,,,,  above and divide by T.

Slrey = C_VdT +EdV
T T

.
J'&frﬂ - J'TTlcT—VdT +LVZTEdV

Because the gas is ideal, P/T = R/V for 1 mole.

ASg = J.Tlc—VdT +LV2V5dv

T
)

- IlC—VdT+RInV—2
T T v,

Here is an alternative derivation for Path G. Because the pressure is constant,
6qrev,G = dH = CPdT

T5
Orev, 6 :J. CPdT
T
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This simpler relation is equivalent to the expression derived from dU above, as follows. Use the relation fp = 6\, +R,
or C, =C,, +nR to substitute into the previous equation.

T T T T
Qrev.c = L_SCPdT = ITS(CV+HR)dT = ITSCVdT + nR TSdT
1 1 1 1

Use the ideal gas law, PV = nRT, to derive an expression for dT.
ar _ d (ij _av

dv  dvinR) nR
ar - &
nR
Use the previous expression to change the variable of integration to obtain the same expression derived from dU above.
T, T, T, T,
Qv = ISCVdT + nRJ.SdT ~ [Bcyar + R[4V
' T T T T, NR

T V.
G = ITSCVdT +le PdV
1

To calculate AS for path G using dH start with the equation for g, 5 and divide by T.

Sqrev — dH dH _ CP dT
T T T
ASG _ J' 8Qrev — .[Ts CP dT
T n T

Again substitute C, =Cy, +nR.

T T T T
ASg = ITS%dT _ LS—CVT”‘RdT _ TSCT—VdT . TS”T—RdT
1 1 1 1

.
= J‘SC—VdT + nRInT—5
T T,

Use the ideal gas law to substitute T = PV/R for 1 mol.

]
ASg = LSCT—VdT + Rln%jns
1 2V n

Ve

)
ASg = LSCT—VdT + RIn
1 1

Thus the same expression derived from dU for 1 mol of an ideal gas.

(C) Calculate the sums for paths F +G.

T, T,
Orev = Qrev,F T Orev,c = LSCVdT+L1CVdT+P2N2 _Vl)
1 5

T5 T5
J' C,dT —J' CydT + P, (V, -V,)
Tl Tl

=P (V2 _V1)

T T
ASg +ASg = J.SC—VdT+J‘1C—VdT+RIn
T T s T

Vo

1

ASF+G

T T,
J'SC—VdT—j 5Cv g4 RInV2
Tl T Tl T Vl

V.
RIn—2
1
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The entropy change is the same as calculated for the other three paths. The heat, however, is different from any of the
other paths.

Adapted from Problems & Solutions to Accompany McQuarrie - Simon Physical Chemistry: A Molecular Approach,
Heather Cox (University Science Books, 1997), exercise 20-6.

3.(A) Because the path is reversible and isothermal, and because the gas is ideal,

Vv 10 atm
AS,... = nRIn—2 = (1 mol)(8.314 J/K-mol)In
gas vV ( )( ) 1atm

1

=19.1J/K

A reversible process is a succession of equilibrium states. Thus the 2" law says that for the overall process (system plus
surroundings), AS, .., = 0.

total

AS = —AS, = —-19.1J/K

surroundings gas

(B) This is a free expansion of an ideal gas into a vacuum. Note that because g = 0 (adiabatic) and w = 0, the 1 law says AU
=q+w =0. Because this is an ideal gas, AU = 0 requires AT = 0; this is an isothermal process. The final state in part
(B) is the same as the final state in part (A), so ASys=19.1 J/IK. Because no heat flows to the surroundings, AS
=0.

surroundings

(C) To calculate ASg,s Wwe must devise reversible paths that connect the initial and final states. We need to determine the
final state. Because the system did work on the surroundings, but no heat flowed, the temperature of the gas decreased.

W = AU = nCyAT = n;R(TZ -T,)

2w 2(-810)

T, =T, + — = 298K + = 298K - 65K = 233K
3nR 3(1 mol)(8.314 J/ K-mol)

We can now devise reversible paths to the final state. Path 1 - reversible and isothermal expansion to 10. L. Path 2 -
reversible and isochoric cooling to 233 K. The entropy change for the first path is the same as in part (A). Calculate the
entropy change for path 2.

80,y = CydT
8Qrev — C—VdT
T
T, —
AS, = J&qi = IZC—VdT = C\,InT—2 = nCVInT—2 - n3Rnl
T T T T T 2 Ty

233K
298 K

= mol)§(8.314J/K~mol)In = -3.07J/K

Calculate the total entropy change.

ASges = AS; + AS, = 19.1J/K — 307J/K-mol = 16.03/K

Because no heat transferred to the surroundings in the actual process, AS 0.

surroundings —

Adapted from K. J. Laidler and J. H. Meiser, Physical Chemistry, 3" ed, 1999.

©Copyright Cornell University 2025. All rights reserved. Reproduction or retransmission of this document, in whole or in part, in any
manner, without the written consent of T.M. Duncan, is a violation of copyright law.



4.(A) First calculate the number of moles of each gas.

na = PaVa _ (2.5atm)(3.7 L) — 0.376 mol
RTA (0.08206 L -atm /K -mol)(300 K)
PeVe (2.5atm)(7.5L) — 0.571mol

N = =
B RTy  (0.08206 L -atm/K -mol)(400 K)

Because the process is adiabatic, the 1%t Law of Thermodynamics requires that the energy gained by Gas A equals the
energy lost by Gas B. The temperature is a state function and thus does not depend on path. For convenience, assume
the following path: the gases first reach thermal equilibrium then they are mixed. Thus Gas A is heated at constant

volume and Gas B is cooled at constant volume.
AU, = —AUg
NACy, A (T ~Ta) = —NgCy 5(T ~Ts)
nAC_:V, Alat nBC_:V, BlB

NACy A +NgCy 8

T =

Substitute the numerical values and calculate.
T - (0.376 mol)(13.7 J/ K -mol)(300 K) + (0.571 mol)(21.7 J/ K - mol)(400 K)
(0.376 mol)(13.7 J/ K -mol) + (0.571 mol)(21.7 J/ K - mol)

T = 371K
(B) Calculate the entropy change along two reversible paths. First, each gas is reversibly heated (or cooled) to 371 K at

constant V. Second, the gases are mixed.

AS = ASA, path1 + ASB, path1 ASmixing
— T — n n
=naCyaln— + NeCygln— — RingIN—A2— + nIn—2E8
ATV.A Ta BV.B Tg {A Na +Ng B nA+nJ
371K

= (0.376 mol)(13.7 J/K-mol)In 871K + (0.571mol)(21.7 J/K-mol)In
300 K 400 K

_ (8.3143/K-mol)| (0.376 molyin—2378 M 0 571 motyIn 2271 mol
0.376+0.571 0.376+0.571

1.080 — 0.945 + 5.289J)/K

5.42J)/K
From J. H. Noggle, Physical Chemistry, 3 ed, 1996.
5.(A) Calculate the total work during a cycle. w = 0 for paths AB and CD because AV = 0. For the adiabatic paths BC and

DA, g=0, and

W = AU = ‘[ CvdT
Thus the total work for the cycle is
Te Ta
Wegge = [ CydT+ [ CyaT

Because C,, may be assumed to be independent of temperature,

Weyle = Cy(Te —Tg)+Cy(Ta—Tp) = Cy(Ta—Tg +Tc —Tp)

The system is heated along path AB.



T
Qag = J-TBCvdT = Cy(Tg—Ta)
A
To calculate the efficiency, note that the work done by the system is —w,, , because of the convention for w; w is
positive for work done by the surroundings on the system. The efficiency is therefore

OaB Cy(Ts-Ta) Tg—Ta Tg—Ta Tg—Ta

(B) For the adiabatic change of a diatomic ideal gas,

T_2 5/2 ) V_l
Tl VZ

T,

e =

Il
e
VR
<1<
Ne—
N
&

Because Vg =V and Ve = Vp,
Vv 2/5 Vv 2/5
T = Tg| 2 and  Tp = Ta| A
¢ B(VD] > A(V J

Substitute these expressions into the efficiency equation derived in part (A).

e=1- —TC ~To
Tg—Ta
2/5 2/5
T (VAJ -T [VAJ
B Aly
-1 D D
Tg—Ta

|
H
|
—
vs)
—
>
VY
<
>
Ne—
N
o

Il

-

I
A~
<|<
o (>
—_

R
o

Vp/V, is the compression ratio for the engine. Higher compression ratios yield higher efficiencies. The typical
compression ratio for a car is about 9, so the typical maximum efficiency about 60%. For an irreversible engine with a
compression ratio of about 9, the efficiency is about 30-35%. A nice description of the Otto cycle in the family car can
be viewed at http://www.familycar.com/engine.htm.

Of course, the gas in the engine is not entirely N,. For a gas mixture with heat capacities C,, and C,, the general
expression for efficiency is

Cy /(Cp+Cy)

V \Y

e=1-|-A~
Vb
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