
ChemE 2200 - Physical Chemistry II for Engineers – Spring 2025 

Solution to Homework Assignment 6 

1.(A)  For a process at constant pressure, H = q.  Start with the definition of PC . 
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 Substitute values for q, n, and T1.  Note that q/n = 85.0/6.16 = 13.80 kJ/mol. 
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 It is not possible to solve for T2.  Solve by whatever means you prefer.  For example, try different values of T2 until the 

equation yields 13.80. 

guess q/n 

400 5.079531 

500 11.14633 

550 14.47941 

525 12.79046 

530 13.12474 

540 13.79861 

 The final temperature is 540 K. 

(B) For this estimate, assume ethylene is an ideal gas at 1 atm and 300 to 600 K.  Thus we use the relation RCC  VP . 
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 For a process at constant volume, U = q.  Start with the definition of VC . 
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 Again it is not possible to solve for T2.  Again I try different values of T2. 
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guess q/n 

500 9.467711 

600 15.47351 

550 12.38529 

570 13.60101 

580 14.21877 

573 13.78565 

573.2 13.79799 

 The final temperature is 573 K. 

(C) Heating at constant pressure has a lower final temperature because the volume increases and thus the gas does PV work 

on its surroundings.  Some of the heat delivered to the gas is used to do this PV work and thus there is less heat available 

to increase the temperature. 

2.(A)  Path F:  P1, V1, T1 to P2, V1, T5.  Because the volume is constant, wF = 0 and thus  
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 To calculate S for path F, start with the first equation above and divide by T.  
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(B) Path G:  P2, V1, T5 to P2, V2, T1.  From the 1st law we have  
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 Because the pressure is constant along Path G, we have  
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 To calculate S for path G, start with the equation for qrev, G above and divide by T.  
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 Because the gas is ideal, P/T = R/V for 1 mole. 
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 Here is an alternative derivation for Path G.  Because the pressure is constant, 
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 This simpler relation is equivalent to the expression derived from dU above, as follows.  Use the relation RCC  VP , 

or nRCC  VP  to substitute into the previous equation. 
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 Use the ideal gas law, PV = nRT, to derive an expression for dT. 

nR

dV
dT

nR

dV

nR

PV

dV

d

dV

dT











 

 Use the previous expression to change the variable of integration to obtain the same expression derived from dU above. 
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 To calculate S for path G using dH start with the equation for qrev,G and divide by T.  
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 Again substitute nRCC  VP . 
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 Use the ideal gas law to substitute T = PV/R for 1 mol. 
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 Thus the same expression derived from dU for 1 mol of an ideal gas. 

(C) Calculate the sums for paths F +G. 

  

)(

)(

)(

122

122
5

V
5

V

122V
5

VG rev,F rev,rev

11

1

51

VVP

VVPdTCdTC

VVPdTCdTCqqq

T

T

T

T

T

T

T

T










 

 

1

2

1

25 VV

1

2V5 V
GFGF

ln

ln

ln

1

5

1

1

51

V

V
R

V

V
RdT

T

C
dT

T

C

V

V
RdT

T

C
dT

T

C
SSS

T

T

T

T

T

T

T

T











 

 
©Copyright Cornell University 2025.  All rights reserved.  Reproduction or retransmission of this document, in whole or in part, in any 

manner, without the written consent of T.M. Duncan, is a violation of copyright law. 



 -  4  - 
 The entropy change is the same as calculated for the other three paths.  The heat, however, is different from any of the 

other paths. 

 Adapted from Problems & Solutions to Accompany McQuarrie - Simon Physical Chemistry: A Molecular Approach, 

Heather Cox (University Science Books, 1997), exercise 20-6. 

3.(A)  Because the path is reversible and isothermal, and because the gas is ideal, 
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 A reversible process is a succession of equilibrium states.  Thus the 2nd law says that for the overall process (system plus 

surroundings), Stotal = 0. 

  K/J1.19gasgssurroundin  SS  

(B) This is a free expansion of an ideal gas into a vacuum.  Note that because q = 0 (adiabatic) and w = 0, the 1st law says U 

= q + w = 0.  Because this is an ideal gas, U = 0 requires T = 0; this is an isothermal process.  The final state in part 

(B) is the same as the final state in part (A), so Sgas = 19.1 J/K.  Because no heat flows to the surroundings, Ssurroundings 

= 0. 

(C) To calculate Sgas we must devise reversible paths that connect the initial and final states.  We need to determine the 

final state.  Because the system did work on the surroundings, but no heat flowed, the temperature of the gas decreased. 
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 We can now devise reversible paths to the final state.  Path 1 - reversible and isothermal expansion to 10. L.  Path 2 - 

reversible and isochoric cooling to 233 K.  The entropy change for the first path is the same as in part (A).  Calculate the 

entropy change for path 2. 
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 Calculate the total entropy change. 

  K/J0.16molK/J07.3K/J1.1921gas  SSS  

 Because no heat transferred to the surroundings in the actual process, Ssurroundings = 0. 

 Adapted from K. J. Laidler and J. H. Meiser, Physical Chemistry, 3rd ed, 1999. 
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4.(A)  First calculate the number of moles of each gas. 
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 Because the process is adiabatic, the 1st Law of Thermodynamics requires that the energy gained by Gas A equals the 

energy lost by Gas B.  The temperature is a state function and thus does not depend on path.  For convenience, assume 

the following path: the gases first reach thermal equilibrium then they are mixed.  Thus Gas A is heated at constant 

volume and Gas B is cooled at constant volume.   
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 Substitute the numerical values and calculate. 
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(B) Calculate the entropy change along two reversible paths.  First, each gas is reversibly heated (or cooled) to 371 K at 

constant V.  Second, the gases are mixed. 
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From J. H. Noggle, Physical Chemistry, 3rd ed, 1996. 

5.(A)  Calculate the total work during a cycle.  w = 0 for paths AB and CD because V = 0.  For the adiabatic paths BC and 

DA, q = 0, and 
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 Thus the total work for the cycle is 
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 Because CV may be assumed to be independent of temperature, 
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 The system is heated along path AB. 
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 To calculate the efficiency, note that the work done by the system is wcycle because of the convention for w; w is 

positive for work done by the surroundings on the system.  The efficiency is therefore 
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(B) For the adiabatic change of a diatomic ideal gas, 
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 For the adiabatic paths BC and DA,  
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 Because VB = VA and VC = VD, 
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 Substitute these expressions into the efficiency equation derived in part (A). 
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 VD/VA is the compression ratio for the engine.  Higher compression ratios yield higher efficiencies.  The typical 

compression ratio for a car is about 9, so the typical maximum efficiency about 60%.  For an irreversible engine with a 

compression ratio of about 9, the efficiency is about 30-35%.  A nice description of the Otto cycle in the family car can 

be viewed at http://www.familycar.com/engine.htm. 

 Of course, the gas in the engine is not entirely N2.  For a gas mixture with heat capacities CV and CP, the general 

expression for efficiency is  
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