
ChemE 2200  –  Physical Chemistry II  –  Spring 2025 

Solution to Homework Assignment 7 

1. To determine if a process is spontaneous, we have two options.  One approach is to calculate the total change in entropy, 

system plus surroundings.  Another approach is to calculate G for the system. 

 1st Approach:  Calculate the total change in entropy, system plus surroundings.  Begin with the system - consider one 

mole of water at 10.C and 1 atm.  We need three paths to use the data at hand.  First warm the water to 0C, then 

freeze the water at 0C, then cool the ice to 10.C. 

 Heat the water to 0C. 

  J/K84.2
K263

K273
lnmol))J/(K76)(mol1(ln

1

2
waterP,1 

T

T
CnS  

 Freeze the water at 0C. 
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 Cool the ice to 10C. 
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 The total entropy change of the H2O is therefore 

  J/K5.20J/K38.1J/K98.21J/K84.2321system  SSSS  

 Now calculate the change in the surroundings.  First calculate the total reversible heat the system absorbs from the 

surroundings.  Recall that q (and H) are positive for heat transferred from the surroundings to the system. 

 Heat the 1 mole of water to 0C which transfers heat from the surroundings to the system. 
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 Freeze the water at 0C, which releases heat from the system into the surroundings. 
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 Cool the ice to 10.C, which transfers heat from the system to the surroundings. 
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 The total enthalpy change is therefore 
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 Thus when one mole of water freezes at 10.C, the system delivers 5610 J to the surroundings.  The entropy change of 

the surroundings is therefore 
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 The entropy of the H2O decreases and the entropy of the surroundings increase.  The total entropy change is  

  J/K8.0J/K3.21J/K5.20gssurroundinsystem  SS  

 Because the net entropy change (system plus surroundings) is positive, the process is spontaneous. 
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 2nd Approach:  Calculate G for the system.  As calculated above for 1 mole of water at 10C, H = 5610 J and  S = 

20.5 J/K.  Use the fundamental equation for G . 
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 Because G is negative, the process is spontaneous. 

 Adapted from J. H. Noggle, Physical Chemistry, 3rd edition, 1996. 

2.(A)  First a general note.  The nomenclature for the pressures, volumes, and temperatures is potentially confusing.  

Subscript "1" does not necessary mean "initial" and subscript "2" does not necessarily mean "final."  For example, in part 

(C), Pinitial = P2 and Pfinal = P1. 

 Use the expression for S in terms of T and P for an ideal gas derived in Calculation Session 6. 
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 For an isobaric compression, Pinitial = Pfinal.  In this case, Tinitial = T1  and Tfinal = T2.  The equation is therefore 
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 Or start with the definition TqSd /rev  for a reversible process.  The heat transferred during cooling at constant 

pressure is  
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(B) Use the expression for S in terms of T and V for an ideal gas derived in thermodynamics lecture 7. 
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 For an isochoric compression, Vinitial = Vfinal.  Again, Tinitial = T1 and Tfinal = T2.   The equation is therefore 
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 Or again start with the definition TqSd /rev  for a reversible process.  The heat transferred during cooling at 

constant volume is  
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(C) Because entropy is a state function, we may take any reversible path from the initial state to the final state.  Rather than 

follow path C, take the opposite of path B, then take path A. 

  BAC SSS   

 Substitute the results from parts (A) and (B) above, and recall that RCC  VP  for an ideal gas. 
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 Another approach is to start with equation (1) and note that for an isothermal process Tinitial = Tfinal.  In this case, Pinitial = 

P2 and Pfinal = P1.   
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 We need to express P1/P2 in terms of T1 and T2.  Because this is a closed system, an analysis of path B yields: 
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 Thus,  
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3.(A)  The heat capacity tells us how the volume and pressure change along a path.  Start with the definition of arbitrary heat 

capacity and substitute the ideal gas law and VC  = 1.5R for a monatomic ideal gas. 

  

dT

Vd

V

T

dT

Vd

V

RT
RR

dT

Vd
PCC







2

2

3

2

7

V

 

 Separate and integrate. 
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 Solve for V2 and plug in the particulars. 
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(B) Presented here are two different approaches to calculating S.  Because the process is reversible, we can start with the 

definition of entropy. 
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 Another approach is to devise two reversible paths to the same final state.  For example, path 1 can be the isothermal 

expansion from 20 L to 55.6 L and path 2 is then isochoric heating from 300 K to 500 K.  Calculate S for the isothermal 

expansion. 
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 Calculate S for the isochoric heating. 
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 The same result obtains. 

 Adapted from L. M. Raff, Principles of Physical Chemistry, Prentice Hall, 2001. 

4.(A)  Heat is added to the gas during the isothermal expansion, step 1.  Because the gas is ideal, U depends on temperature 

only, so U = 0 for the isothermal expansion.  (Note: n = 1 mol) 
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 Note that because V2 > V1, qstep 1 is positive, as expected. 

(B) The gas discharges heat during the isochoric cooling, step 2.  Because there is no change in volume, no work is done 

during step 2.  (Again, n = 1 mol). 
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 Note that because T2 < T1, qstep 2 is negative, as expected. 

(C) The total work for the cycle is 
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 Because V2 > V1, the first term is negative - the system does work on the surroundings.  Because T1 > T2, the second term is 

positive - the surroundings do work on the system. 
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(D) The efficiency is thus 
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 We need to express the ratio V2/V1 in terms of T1/T2.  Recall for an adiabatic expansion of an ideal monatomic gas, 
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 Substitute this expression into the expression for the efficiency. 
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(E) Step 1 is isothermal.  So the path on a plot of T vs. S will be a horizontal line.  The volume increases, so S increases.  Step 1 

is a horizontal path to the right.  Step 3 is adiabatic and reversible, so S = 0; the path is vertical.  The temperature 

increases, so the path is upward.  Step 2 just connects the two paths, but the line is curved.  From a Useful Relationship we 

have  
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 Or in terms of the slope on the S-T plot, 
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 Because CV is constant for an ideal gas, the slope increases with temperature and the path is curved, as shown below. 
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5.(A) Because 
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 is an exact differential, Euler's relation provides that  
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 Apply Euler's relation to the results from Example 21-1 of McQuarrie and Simon. 
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 Substitute the results of equations (2) and (3) into equation (1). 
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 Note that the two terms on the left side of the equation cancel because U(T, V) is an exact differential.  That is,  
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 Solve for (U/V)T. 
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 Use the ideal gas law, P = nRT/V, to substitute for P in equation (4). 
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(B) Use the form of the gas law, P = f(V)T, to substitute for P in equation (4). 
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6. To find the minimum temperature, we need to continue to satisfy the both the 1st and 2nd laws of thermodynamics.  To 

satisfy the 1st law, the temperature decrease must equal the temperature increase for equal flow rates of the hot and cold 

streams, assume the heat capacity is independent of temperature in the range Tcold. to Thot. 
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 Substitute for Thot into the expression for totalS .  Calculate the entropy change for expanding the gas to P2 from P1, cool 

half the gas to Tcold from T1, and warm half the gas to Thot from T1. 
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 We need to solve a quadratic equation for Tcold.  Although it would be nice to have a general equation for Tcold in terms 

of the pressures, that will have to wait.  For now substitute the particulars and solve for Tcold. 
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 The theoretical low temperature limit for a reversible process is 125 K.  Of course, this temperature cannot be obtained 

for an irreversible process.  Also, we have assumed the heat capacity is constant, which is likely inaccurate for cooling to 

125 K. 
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