
ChemE 2200  –  Physical Chemistry II  –  Spring 2025 

Solution to Homework Assignment 8 

1. On homework 5, exercise 3 we calculated that compartment A is heated to 900 K. 

(A) For section A, use two successive reversible paths to get from the initial state to the final state: (1) isochoric heating, and 

then (2) isothermal expansion. 
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 For section B, the process is reversible isothermal compression. 
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(B) On homework 5 we calculated the reversible work for sections A and B:  wA  3.46  103 J and wB  3.46  103 J.  

Recall wmax  wrev A.  This relation is valid only for constant temperature, so we can calculate AB  wB  3.46  

103 J.  However, AA  wA because the temperature in section A was not constant.  We would guess that AA is negative 

because wA is negative, but this is only a guess.  AA is indeterminate. 

 Or we can use the definition of Helmholtz energy, A = U  TS, and take the difference at constant temperature. 

  A    U    TS 

 Because section B is an ideal gas at constant temperature, we have UB  0.  From part (A), SB  11.5 J/K. 

  AB    UB    TBSB    0    (300 K)(11.5 J/K)     3.46  103 J. 

We obtain the same result as above.  The temperature is not constant in section A, so the change in Helmholtz energy is 

  AA    UA    TS)A    UA    (TS)A,final  (TS)A,initial) 

 We calculated UA for homework 5 (UA  2.4  104 J).  Although we calculated the change in entropy, SA, in part 

(A), we do not know the absolute values of SA,initial and SA,final.  Again we find that AA is indeterminate.   

 Again, we can estimate whether AA is positive or negative.  The absolute entropy of an ideal gas depends on the 

molecular mass and the number of atoms in the molecule.  The absolute entropy ranges from about 200 J/K to 1500 J/K.  

(See “Prediction of absolute entropy of ideal gas at 298K of pure chemicals”, A. Fazeli, et al., Energy Conversion and 

Management, 52, pp 630-4, 2011.)  Thus TS)A ranges from about 1  105 J to about 9  105 J.  Again, we estimate 

AA is negative.  

(C) Because section B was constant temperature, we have G = H  TS.  HB = 0 because the gas is ideal and T  = 0. 
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 GA is indeterminate because the temperature is not constant. 

(D) Ssystem is the sum of the entropy changes for the two sections. 
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 Because the process was reversible, the process was neither spontaneous in the forward direction nor the reverse 

direction.  That is, the total entropy change for a reversible process, Ssystem + Ssurroundings, is zero. 
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 Adapted from P. Atkins, Physical Chemistry, 6th edition, 1997. 
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2. This is similar to the example presented in lecture T8.  But in this case the surroundings deliver work to the system.  So 

the maximum work done by the system equals the minimum work done by the surroundings.  We need to calculate A.  

We begin with the relation 
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 Separate and integrate. 
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 Substitute the ideal gas law. 
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 Calculate A for the system.  Note that nA = nB = 2 mol and  TA = TB = 353 K. 
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 The minimum work done by the surroundings on the system is 1690 J.  Or, w = +1690 J. 

(B) The initial state of the system is 

  

1 mol N2 + 1 mol H2

10 L, 80°C
1 mol N2 + 1 mol H2

10 L, 80°C
 

 As the piston moves infinitesimally to the right, the pressure in the right compartment increases infinitesimally and the 

pressure in the left compartment decreases infinitesimally.  Because the piston is permeable to H2, H2 diffuses from the 

right compartment to the left compartment such that the chemical potential of H2 in each compartment is equal.  Because 

H2 is an ideal gas, equal chemical potentials requires equal partial pressures, and equal partial pressures requires equal 

partial molar volumes.  The ratio of volumes is 15:5 = 3:1, so the H2 molar ratio is also 3:1.  There will be 1.5 moles of 

H2 in the 15 L compartment and 0.5 moles of H2 in the 5 L compartment.  Thus the partial molar volume of H2 will be 15 

L / 1.5 mol = 5 L / 0.5 mol = 10 L/mol in both compartments. 

 The barrier is impermeable to N2 so the final amounts of N2 in each compartment is the same as the initial amounts of N2 

in each compartment; 1 mol in each.  In the 15 L compartment, the N2 partial molar volume is 15 L/mol.  In the 5 L 

compartment, the N2 partial molar volume is 5 L/mol. 

  

1 mol N2

0.5 mol H2

5 L, 80°C

1 mol N2 + 1.5 mol H2

15 L, 80°C

 
(C) Because the partial pressure of H2 is the same in both compartments throughout the process, H2 does not oppose the 

piston movement.  The PV work due to N2 is calculated in the same manner as part (A), except now nA = nB = 1 mol. 
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 Thus w = +844 J.  The work is half the work calculated for an impermeable piston. 

 An alternate way to calculate the work is the relation wmax = A = TS for a reversible, isothermal process.  Note that 

A yields the maximum work done by a system, or the minimum work that must be done on a system.  To calculate the 

entropy change, we need only consider the volume change of H2 and N2 in this isothermal, reversible process.  The 

volume of H2 does not change; H2 is free to roam the entire 20L throughout the process.  For the N2 in compartment A, 

the volume increases from 10 L to 15 L.  For the N2 in compartment B, the volume decreases from 10 L to 5 L.  First, we 

need an equation to calculate the entropy change with volume at a constant temperature.  Start with a Maxwell relation. 
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 Separate and integrate. 
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 Substitute the ideal gas law. 
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 We now use the above equation to calculate S.  Again note that nA = nB = 1 mol for N2. 
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 For an isothermal reversible process, 

  J844J/K)39.2(K)353(rev  STAw  

 This is expected that TS = wrev for this system because U = 0 for an ideal gas in an isothermal process, thus 

  
STqw

wqU





revrev

revrev0
 

 Adapted from H. B. Callen, Thermodynamics, Wiley, 1960. 
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3. Start with the hint. 
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 Apply the chain rule to (S/P)V. 
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 From the Useful Equations, (S/T)V = CV/T, 
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 So we have the first term in the target equation.   

For the second term, apply the chain rule to (S/V)P and a Useful equation, (S/T)P = CP/T, 
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 Substitute equations (2) and (3) into equation (1). 
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4. Take the hint and start with the cyclic rule, 
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 to write an expression for (T/P)H. 
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 Use the reciprocal rule for (T/H)P. 
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 For (H/P)T start with a Practical Equation for dH,  
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 and assume constant T, which drops the first term on the right-hand side. 
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 Substitute equations (2) and (3) into equation (1): 
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 Here is an alternative method to obtain an equation for (H/P)T.  Start with the Fundamental Equation for dH and take 

the partial derivative with respect to P at constant T. 
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 Use a Maxwell relation (S/P)T =  (V/T)P and one arrives at equation (3) above. 

 Now, substitute equations (2) and (3) into equation (1) to obtain the desired result. 
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 Here is an alternate method for the entire derivation.  Start with a Practical Equation for dH and assume constant H.  
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 Differentiate both sides with respect to P.  
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5. We seek the temperature and pressure of the triple point.  That is, we need to find the point at which any two borders on 

the phase diagram intersect:  the solid-liquid border, the solid-vapor border, or the liquid-vapor border. 
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 Use the Clapeyron equation with the data provided to determine the slope of the solid-liquid border. 
 
©Copyright Cornell University 2025.  All rights reserved.  Reproduction or retransmission of this document, in whole or in part, in any 

manner, without the written consent of T.M. Duncan, is a violation of copyright law. 
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 The slope of the solid-liquid border is 132 atm/K.  The border passes through the point T = 0C and P = 1 atm.  The 

equation for the border is therefore 
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 Note that equation for the border can be expressed in Kelvin or degrees Celsius.  Using Kelvin causes the small change 

in transition temperature to be lost in the (in)significant figures.  It is more accurate to derive an equation for the border 

in units of degrees Celsius. 

Use the Clausius-Clapeyron equation to determine the slope of the liquid-vapor border. 
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 The slope of the liquid-vapor border is 6.03  104 atm/K.  The border passes through the point T = 5C and P = 0.00861 

atm.  Again we use degrees Celsius and not Kelvin.  This is valid because we are calculating temperature differences, not 

absolute temperatures.  The equation for the border is therefore 
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 Find the intersection of the solid-liquid and liquid-vapor borders;  find the intersection of equations (1) and (2). 
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 Calculate P. 

  atm0056.000560.0)C00753.0(1003.6 4  P  

 The triple point for water is at 0.0075C and 0.0056 atm. 

 Adapted from B. G. Kyle, Chemical and Process Thermodynamics, 3rd edition, 1999. 

6.(A)  Find the intersection of the line labeled "(4/3)Al2O3" and the line labeled "C + O2  CO2"  This is the point at which  
0
rxnG  = 0 for the reaction 2Al2O3(s)  +  3C(s)    4Al(s)  +  3CO2(g).  This is at approximately 2740C. 

(B) Start with the hint and use the Gibbs-Helmholtz equation to derive an expression for 0
rxnG  as a function of temperature. 

  
2

0
rxn

0
rxn )/(

T

H

T

TG

P
















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 Separate and integrate (at constant P). 

  

)1(
298

)298(
)(

298

)298()(

298

11

298

)298()(

298

11

298

)298()(

)/(

constant at )/(

0
rxn

0
rxn

0
rxn0

rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

298 2

0
rxn

298

0
rxn

2

0
rxn0

rxn

HT
HG

TG

T

HHG

T

TG

T
H

G

T

TG

T
H

G

T

TG

dT
T

H
TGd

PdT
T

H
TGd

TT










 
















 












 














 

 Calculate 0
rxnH  from the enthalpy data in Table 19.2 (p. 795) of McQuarrie and Simon, 

  mol/kJ8.241008.241
2

1 0
O f,

0
H f,

0
OH f,

0
rxn 222

 HHHH  

 Calculate 0
rxnG (298) from the enthalpy data in Table 26.1 (p. 1057) of McQuarrie and Simon, 

  mol/kJ582.22800582.228
2

1
)298( 0

O f,
0
H f,

0
OH f,

0
rxn 222

 GGGG  

 Substitute into the expression for 0
rxnG (T). 

  

)2(mol/kJ8.24104436.0)(

mol/kJ8.241
298

)8.241(582.228
)(

0
rxn

0
rxn









 



TTG

TTG
 

 Note that equation (1) is equivalent to  

  

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn

0
rxn0

rxn

)(

)1(
298

)298(
)(

HTSTG

HT
HG

TG












 


 

 From the entropy data in Table 21.2 (p. 864) of McQuarrie and Simon, I calculate 0
rxnS  = 188.8  ½(205.2)  130.7 = 

0.0445 kJ/(Kmol), which is the same as the equation calculated with enthalpies and Gibbs energies, as it should be. 

 From equation (2) I calculate 0
rxnG (773)= 207.5 kJ/mol and 0

rxnG (2273) = 141.0 kJ/mol.  These points are plotted 

on the Ellingham diagram and a straight line is drawn. 

(C) The line for the reaction H2(g)  +  ½O2(g)    H2O(g) intersects the line for the reaction (1/3)Al2O3(s)    (2/3)Al(s)  +  

½O2(g) at about 3700C.  The reaction H2(g)  +  ½O2(g)    H2O(g) is not effective because the number of gas 

molecules decreases, and entropy causes the Gibbs energy to decrease as T increases. 

7. Begin by labeling the lines in the plots.  At low temperature (or high pressure) X is a solid.  The line at high temperature 

(or low pressure) corresponds to vapor.  The line in the middle is liquid. 

(A) This is the intersection of the solid and liquid lines in the G -T diagram:  180 K. 

(B) Find the point on the G -P diagram at 10 atm, the pressure of the data in the G -T diagram.  This is G  = 40 kJ/mol, at 

the intersection of the vapor and liquid lines.  Find the corresponding point on the G -T diagram.  This intersection 

(which is also G  = 40 kJ/mol) is at T = 380 K. 
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(C) Use the slope of the liquid line in the G -P diagram. 

  mol/L11.0
kJ1013.0

atmL1

atm10100

mol/kJ4041

run

rise



















T

P

G
V  

(D) Use the slopes of the liquid and vapor lines in the G -T diagram to obtain the molar entropies of the liquid and vapor, 

respectively. 

  

mol)K/(J128mol)K/(J0.5133

mol)K/(J133
K380440

mol/kJ4032

run

rise

mol)K/(J0.5
K180380

mol/kJ4140

run

rise

liquidvaporvap

vapor

liquid







































SSS

T

G
S

T

G
S

P

P

 

(E) At the liquid-vapor transition, 0vap G  

  
mol/kJ8.48)mol)K/(J128)(K380(

0

vapvap

vapvapvap





STH

STHG
 

8. From the fundamental equation for Gibbs energy, dG = SdT  VdP, we have 

  V
P

G

T












 

 So for Grxn =  Greactants  Gproducts and Vrxn =  Vreactants  Vproducts we have 

  rxn
rxn V

P

G

T












 

 The key indicator is Vrxn.  CV, rxn should be ignored.  Because the volume of solids is negligible, Vrxn is proportional 

to the number of gas moles created in the reaction;  Vrxn = ngas(RT/P). 

 Consider adding reaction 1 to reaction 2: 

  net reaction: P(s)  +  A(g)  +  Z(s)    Q(s)  +  K(g) G(25C) = +57 45 = +12 kJ/mol 

 For reaction 1 + 2, Vrxn = 0.  So as the pressure increases, Grxn remains approximately +12 kJ/mol.  This combination 

is unlikely to reach Grxn = 0 by increasing the pressure. 

 Consider adding reaction 1 to reaction 3: 

  net reaction: P(s)  +  2W(g)    Q(s)  +  B(g)  +  D(g) G(25C) = +57 51 = +6 kJ/mol 

 For reaction 1 + 3, Vrxn = 0.  So as the pressure increases, Grxn remains approximately  +6 kJ/mol.  This combination 

is unlikely to reach Grxn = 0 by increasing the pressure. 

 Consider adding reaction 1 to reaction 4.  Note that we need to reverse reaction 4, so we add reaction 1 to the reverse of 

reaction 4. 

  net reaction: P(s)  +  A(g)  +  M(s)    Q(s)  +  E(s) G(25C) = +57 23 = +34 kJ/mol 

 For reaction 1 + (4), Vrxn = 1  (RT/P).  So as the pressure increases, Grxn decreases from +34 kJ/mol.  At a 

sufficiently high pressure, Grxn = 0. 

 Summary: add reaction 1 to the reverse of reaction 4. 


