ChemE 2200 – Chemical Kinetics Lecture 16

Today: The Kinetics of Heterogeneous Catalysis, cont'd

Adsorption Isotherms

Rate Equations

"What adsorption properties must be balanced for an effective catalyst?"

Recap: The Basic Mechanism of Heterogeneous Catalysis

$$A \xrightarrow{M} P$$

The Langmuir-Hinshelwood Mechanism of Elementary Reactions:

$$A + M \xrightarrow{k_{ads, A}} M-A$$
 adsorption pre-equilibrium

 $M-A \xrightarrow{k_{surface}} M-P$ surface reaction usually the RLS

 $M-P \xrightarrow{k_{des, P}} P + M$ desorption post-equilibrium

The Thermodynamics of Adsorption

$$A + M \overset{k_{ads, A}}{\underset{k_{des, A}}{\rightleftharpoons}} M-A$$
 Often in equilibrium.

Almost always exothermic.

 $\Delta \overline{H}_{\rm ads}$ depends on adsorbate, surface, and coverage. will ignore in ChemE 2200

Two Categories of Adsorption:

Physical Adsorption (aka physisorption)

Weak M-A bond: $-\Delta \overline{H}_{ads}$ is 0 to 25 kJ/mol.

Examples: saturated hydrocarbons: CH₄, CH₃CH₃

Chemical Adsorption (aka chemisorption)

Strong M-A bond: $-\Delta \overline{H}_{ads}$ is 40 kJ/mol and higher

Examples: dissociative adsorption: $H_2 + 2M \stackrel{\rightarrow}{\leftarrow} 2M-H$

polar compounds: CO, NO, H₂O

The Thermodynamics of Adsorption, cont'd

M

 $-\Delta \overline{H}_{ada}$, kJ/mol

For the catalyzed reaction $A + B \rightarrow P$ the surface reaction is

$$M-A + M-B \rightarrow M + M-P$$

Both A and B must be adsorbed on M.

Truncated Solids: Heats of Adsorption

poor catalysts: adsorbed H₂ excludes adsorbed N₂

reaction	adsorbate	ads, no mor				
		Fe	Ni	Rh	Pt	
$N_2 + 3H_2 \rightarrow 2NH_3$	H_2	142	155	117	107	
	N_2	168	< 20	< 20	< 20	
	good cataly	st: compa	rable adso	rption		•

 $2CO + O_2 \rightarrow 2CO_2$ O_2 570 500 503 294 CO 192 176 193 201

poor catalysts: ____ adsorbed O₂ excludes adsorbed CO

good catalyst:

comparable adsorption

Comparable adsorption is necessary, but not sufficient.

The Thermodynamics of Adsorption, cont'd

For the catalyzed reaction A + B $\stackrel{M}{\rightarrow}$ P the surface reaction is M-A + M-B \rightarrow M + M-P

Both A and B must be adsorbed on M.

Adsorption of both reactants is *essential* to the Langmuir-Hinshelwood Mechanism.

An alternative reaction, $M-A + B(gas) \rightarrow M-P$ is unlikely and rare.

Ballistic impact from the gas phase is the Eley-Rideal Mechanism.

Like a termolecular elementary reaction,

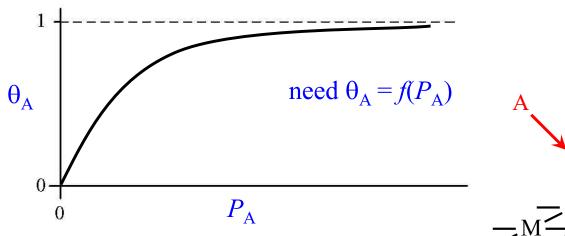
$$A(gas) + B(gas) + C(gas) \rightarrow P$$

reaction by ballistic impact is possible

but *improbable*

relative to the reaction of two adsorbed reactants.

Fractional Coverage of A
$$\equiv \theta_A = \frac{\text{adsorption sites occupied by A}}{\text{total adsorption sites}}$$



Langmuir Isotherm.

Assumes $\Delta \overline{H}_{ads}$ is independent of surface coverage. Assumes only a single layer of adsorbed A.

excellent model for $P_{\rm A}$ < vapor pressure of A.

$$A + M \underset{k_{\text{des, A}}}{\overset{k_{\text{ads, A}}}{\rightleftharpoons}} M-A$$

At equilibrium: $k_{\text{ads, A}}[A][M] = k_{\text{des, A}}[M-A]$ need [M] = ..., [M-A] = ...

The Thermodynamics of Adsorption - Adsorption Isotherms

$$A + M \underset{k_{\text{des, A}}}{\overset{k_{\text{ads, A}}}{\longleftrightarrow}} M-A$$

At equilibrium: $k_{\text{ads, A}}[A][M] = k_{\text{des, A}}[M-A]$ need [M] = ..., [M-A] = ...

total concentration of adsorption sites $\equiv [M]_0 = [M] + [M-A]$

from the definition of θ_A : $\theta_A = \frac{[M-A]}{[M]_0} \Rightarrow [M-A] = \theta_A[M]_0$ $\theta_A = \frac{[M]_0 - [M]}{[M]_0} \Rightarrow [M] = (1-\theta_A)[M]_0$

$$\theta_{A} = \frac{[M]_{0} - [M]}{[M]_{0}} \implies [M] = (1 - \theta_{A})[M]_{0}$$

$$k_{\text{ads, A}}[A](1-\theta_A)[M]_0 = k_{\text{des, A}}\theta_A[M]_0$$

Define
$$K_A \equiv \frac{k_{\text{ads, A}}}{k_{\text{des, A}}} \implies K_A[A](1-\theta_A) = \theta_A \implies \theta_A = \frac{K_A[A]}{1+K_A[A]}$$

Convert [A] to
$$P_A$$
: [A] = $\frac{n_A}{V} = \frac{P_A}{RT}$ \Rightarrow $\theta_A = \frac{\frac{K_A}{RT}P_A}{1 + \frac{K_A}{RT}P_A}$

$$\theta_{A} = \frac{K_{A}[A]}{1 + K_{A}[A]}$$

$$\theta_{A} = \frac{\frac{K_{A}}{RT}P_{A}}{1 + \frac{K_{A}}{RT}P_{A}}$$

[A] is awkward for reactor design.

substitute

The Thermodynamics of Adsorption - Adsorption Isotherms

Using the Langmuir Isotherm in Rate Equations.

Overall Reaction:
$$A_{(gas)} \xrightarrow{M} P_{(gas)}$$

Mechanism of

Elementary Reactions:

A Langmuir-Hinshelwood
$$A + M \stackrel{k_{ads,A}}{\leftarrow} M-A$$
 adsorption Mechanism of $k_{des,A}$

$$M-A \xrightarrow{k_{surface}} M-P$$
 surface reaction

$$k_{\text{des,P}}$$
M-P $\stackrel{\rightarrow}{\leftarrow}$ M + P desorption $k_{\text{ads,P}}$

Need expressions for [M-A] and [M-P] to derive the rate equation.

Assume Langmuir Isotherms for the adsorption/desorption of A and P.

This assumption allows one to write –

$$k_{\text{ads, A}}[M][A] = k_{\text{des, A}}[M-A]$$
 and $k_{\text{ads, P}}[M][P] = k_{\text{des, P}}[M-P]$

This assumption yields two useful expressions:

$$[M-A] = K_{ads, A}[M][A]$$
 and $[M-P] = K_{ads, P}[M][P]$

Rate Equations for Heterogeneously-Catalyzed Reactions

Recall our goal for Chemical Kinetics:

Given the Overall Reaction and Rate Equation, devise a Mechanism of Elementary Reactions.

Recall our Strategy:

Gain experience by starting with a Mechanism of Elementary Reactions and deriving the Rate Equation.

Heterogeneous Catalysis: Case Study 1

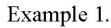
Overall Reaction:
$$A_{(gas)} \rightarrow P_{(gas)}$$
 metal catalyst

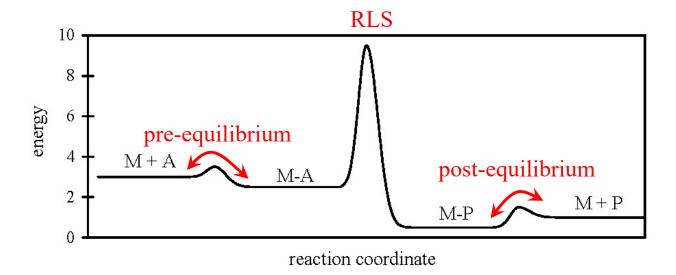
A Langmuir-Hinshelwood Mechanism of Elementary Reactions:

$$A + M \overset{k_{ads,A}}{\underset{\leftarrow}{\leftarrow}} M-A$$
 adsorption $k_{des,A}$

$$M-A \xrightarrow{k_{surface}} M-P$$
 surface reaction

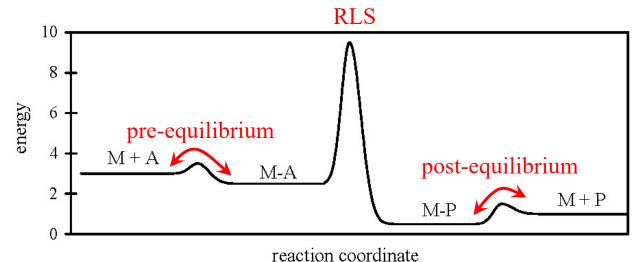
$$k_{\text{des,P}}$$
 $M-P \underset{k_{\text{ads,P}}}{\rightarrow} M + P$ desorption





Overall Reaction: $A_{(gas)} \rightarrow P_{(gas)}$

Example 1.



Because the surface reaction is the RLS: $\frac{d[P]}{dt} = k_s[M-A]$

Because the surface reaction is the KLS:
$$\underline{dt} = k_s[M-A]$$

$$[M-A] = \theta_A[M]_0 = \underbrace{[M-A] + [M-P]}_{[M] + [M-A] + [M-P]}[M]_0$$
instead, jump to this
$$[M-A] = \frac{K_{ads,A}[A]}{1 + K_{ads,A}[A] + K_{ads,P}[P]}[M]_0$$
Assume Langmuir Isotherms for A and P.

$$\frac{d[P]}{dt} = k_s[M-A] = \frac{k_s K_{ads,A}[A]}{1 + K_{ads,A}[A] + K_{ads,P}[P]}[M]_0$$
unoccupied M sites M-A sites M-P sites

Overall Reaction:
$$A_{(gas)} \xrightarrow{M} P_{(gas)}$$

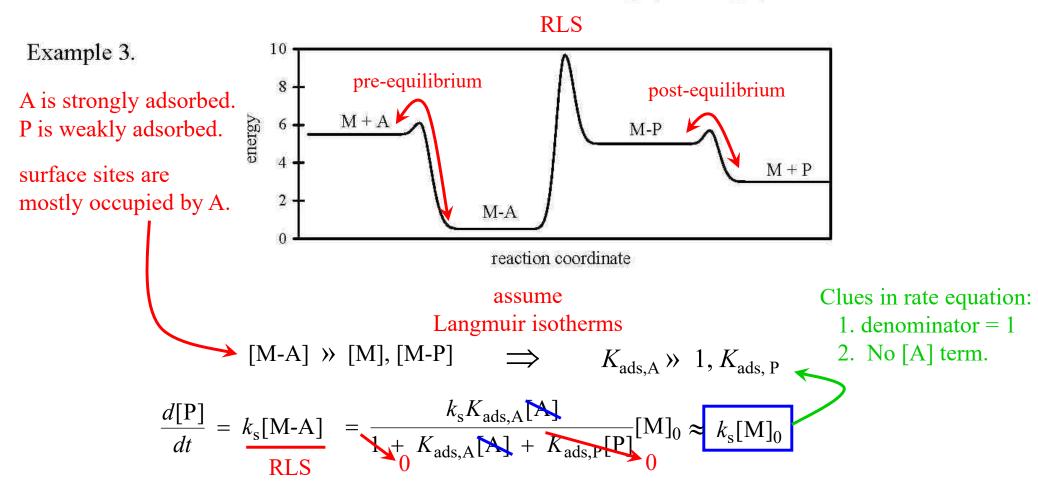


may have $\Delta \overline{G}_{ads} > 0$ because

$$\Delta \overline{G}_{\rm ads} = \Delta \overline{H}_{\rm ads} - T \Delta \overline{S}_{\rm ads}$$

and $\Delta \overline{S}_{\rm ads} < 0$

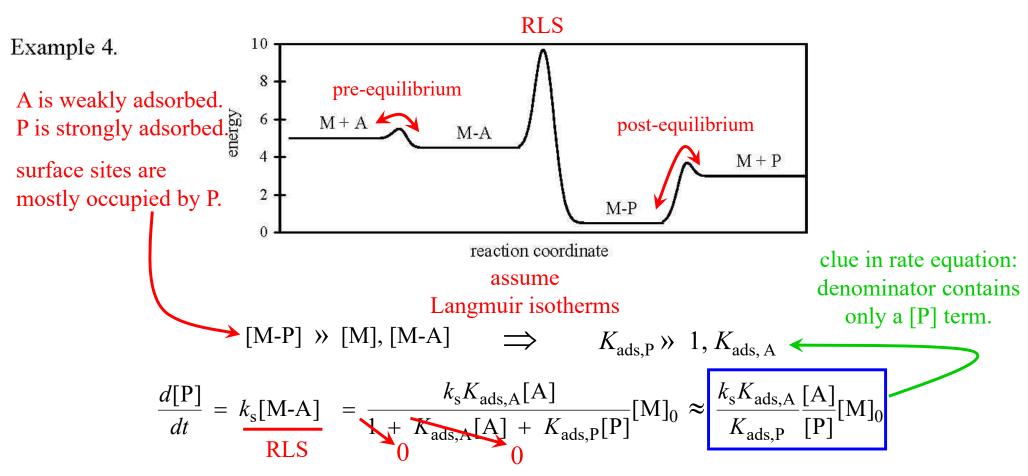
Case Study 1. Overall Reaction: $A_{(gas)} \xrightarrow{M} P_{(gas)}$



Rate is independent of [A]! How can this be?

The RLS is proportional to [M-A]. Increasing [A] does not increase [M-A] because the surface is saturated with adsorbed A.

Case Study 1. Overall Reaction: $A_{(gas)} \xrightarrow{M} P_{(gas)}$

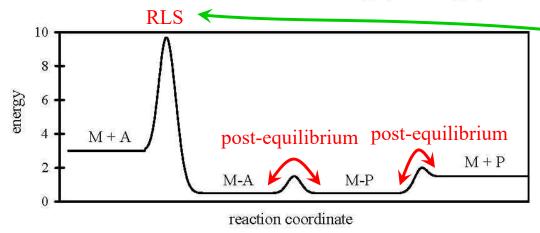


The product P in an *irreversible* reaction hinders the reaction! How can this be?

P monopolizes the surface sites, which reduces [M-A].

Case Study 1. Overall Reaction: $A_{(gas)} \rightarrow P_{(gas)}$

Example 5.



RLS:
$$\frac{d[P]}{dt} = k_{ads,A}[A][M]$$
 [M

RLS:
$$\frac{d[P]}{dt} = k_{\text{ads,A}}[A][M]$$
 $[M] = \theta_{\text{empty}}[M]_0 = \frac{[M]}{[M] + [M-A] + [M-P]}[M]_0$

by definition

Assume Langmuir Isotherm for P. $[M-P] = K_{ads,P}[P][M]$

Assume post-equilibrium for surface reaction: $k_s[M-A] = k_s[M-P] = k_sK_{ads,P}[P][M]$

$$[M] = \frac{[M]}{[M] + \frac{k_{-s}}{k_{s}} K_{ads,P}[P][M] + K_{ads,P}[P][M]} = \frac{1}{1 + K_{ads,P} \left(1 + \frac{k_{-s}}{k_{s}}\right) [P]} [M]_{0}$$

$$\frac{d[P]}{dt} = \underbrace{k_{ads,A}[A][M]}_{RLS} = \frac{k_{ads,A}[A]}{1 + K_{ads,P} \left(1 + \frac{k_{-s}}{k_{s}}\right) [P]} [M]_{0}$$

clues in rate equation: denominator contains 'unoccupied sites' term and [P] term.